Acti 9 Advanced Communication Technology that Inspires..... Schneider Electric

About Schneider Electric

About Schneider Electric

As a global specialist in energy management, Schneider Electric offers integrated solutions across multiple market segments, including leadership positions in energy and infrastructure, industrial processes, building automation, and data centres/networks, as well as a broad presence in residential

Focused on making energy safe, reliable, and efficient, the Company is committed to help individuals and organizations "Make the most of their energy".

Our presence worldwide and in India

*Figures as on April 2012

Acti 9

Advanced Communication Technology that Inspires.....

Total Communication from POWER to FINAL Distribution

Acti 9 | Advanced Communication Technology that Inspires

> Protection devices

- Miniature circuit breaker
- Residual current circuit breaker
- Vigi™ residual current devices
- Surge arrester

> Protection monitoring and supervision

- Indication and tripping auxiliaries
- Remote control auxiliaries
- Automatic recloser auxiliaries

Manage loads, reduce operating and project costs, and accurately plan maintenance

> Control and monitoring

- Contactors
- Impulse relays
- Integrated control circuit breaker
- Light indicators
- Push-buttons and selector switches
- Kilowatt hour meters
- Communicating architecture

> Installation system

- Installation system
- IP20B terminals
- Splitter block
- Full range of mounting and wiring accessories

Reliable

Dual certifications for one product, 100 percent MCB and RCD Coordination, easy ordering and design, error free fast connections

of industry exp new reference

generations

of industry experience make Acti 9 the new reference in low-voltage modular systems

Contents

Protection Devices	3-20
MCBs	-
RCDs	
SPDs	15
Auxiliaries	19
Control & Indication Devices	21-35
Communication Ready Devices	22-29
Reflex iC60	24
iCT Contactors	25
iTL Impluse Relays	26
Smartlink	27
Energy Meters	28
Auxiliaries and Accessories	29
Basic Control & Indication Devices	30-35
Isolators	30
Changeover Switches	3
Push buttons	32
Indicators	33
Bells and Buzzers	34
Time Switches	35
Technical Information	36-63
Dimensions	36
Complimentary Technical Information	4
Protection Discrimination	53
Cascading	59
Applications	65-68

Global range for Indian Installations

- > MCBs suitable for higher ambient temperature
 - No De-rating required till 50°C
- > SI version RCDs now also suitable for adverse environmental conditions
 - Assured protection in electrically polluted networks
 - Enhanced protection in corrosive and humid environment
- > Widest product range for every application
 - MCBs from 0.5A to 125A with 10kA to 50kA breaking capacity
 - RCDs upto 125A with 10mA 1000mA sensitivity
 - SPDs, Auxiliaries and accessories, Control and Indication devices

- > Protection against Overload and Short Circuit current fault
- > Protection of people against indirect contact in IT and TN earthing systems
- > Suitability for isolation in the industrial sector to IEC/EN 60947-2

Key Benefits

- Widest range: Precise solution for all application > 0.5A to 125A
 - > High breaking capacity range from 10kA to 50kA
- Low cost with higher performance: Cascading Cascading charts available From ACB-MCB-MCB level
- Reduce Downtime: Discrimination
 Discrimination charts available From ACB-MCCB-MCB level
- Easy Installation: Bi connect terminals
- Increased service life: Fast Closing mechanism
- Field fittable auxiliaries available for advance protection and monitoring
- Field fittable Comm ready auxiliary for remote monitoring of:
 - Status of MCB ON / OFF / Trip
 - Number of ON / OFF operations
 - Number of tripping due to faults
 - Number of running hours

and Recoverable REACH and RoHS compliant

Suitable for

ComReady Auxiliary

Miniature Circuit Breakers (MCBs)

xC60

10kA - IS/IEC 60898-1; IEC/EN 60898-1 15kA - IEC 60947-2

- Ensures no accidental contact with live part Fingerproof IP-20 terminals
- Operational Safety at the downstream Suitability for Isolation
- Avoids false insertion of cables and loose termination : Pull up terminals
- Total Flexibility: Line-Load reversibility
- Field fittable auxiliaries available for advanced protection & monitoring
- Flexible termination of Busbars and Cables -Bi-Connect terminals
- Suitable for DC application (60VDC/pole)
- Breaking Capacity enhanced to 25kA as per IEC 60947 when backed by Compact NSX MCCBs

_					
Tec	hni	IC A	Ш.)ai	12

Parameter	xC60 MCB
Current Rating	0.5-63A
Poles	1,2,3,4
Rated Voltage	240-415V
Terminal Capacity	Rigid cables upto 35 sqmm Flexible cables upto 25 sqmm
Impulse Withstand Voltage	6KV
Breaking Capacity	10KA as per IEC-60898-1 15KA as per IEC-60947-2
Limitation Class	3
Operating Temperature	-25 to 70°C

xC60		Detine (A)		References		NA 1 1 - 100 101
Poles		Rating (A)	B Curve	C Curve	D Curve	Module Width
P		0.5	l <u>-</u>	A9N1PD5C	_	1
	1	1	-	A9N1P01C	A9N1P01D	1
9	\star	2	-	A9N1P02C	A9N1P02D	1
	_	3	 	A9N1P03C	A9N1P03D	1
*anti-		4	-	A9N1P04C	A9N1P04D	1
	5	6	A9N1P06B	A9N1P04C	A9N1P06D	1
A STATE OF THE STA	5	10	A9N1P10B	A9N1P10C	A9N1P10D	1
16. m.	۲	16	A9N1P16B	A9N1P16C	A9N1P16D	1
	2	20	A9N1P20B	A9N1P20C	A9N1P20D	1
3						
Gar.		25	A9N1P25B	A9N1P25C	A9N1P25D	1
		32	A9N1P32B	A9N1P32C	A9N1P32D	1
		40	A9N1P40B	A9N1P40C	A9N1P40D	1
		50	A9N1P50B	A9N1P50C	A9N1P50D	1
		63	A9N1P63B	A9N1P63C	A9N1P63D	1
		0.5	-	A9N2PD5C	-	2
- N-	1 3	1	-	A9N2P01C	A9N2P01D	2
0 0	* *	2	-	A9N2P02C	A9N2P02D	2
	_	3	-	A9N2P03C	A9N2P03D	2
Appen -))	4	_	A9N2P04C	A9N2P04D	2
		6	A9N2P06B	A9N2P06C	A9N2P06D	2
- T T T T T T T T T T T T T T T T T T T	77	10	A9N2P10B	A9N2P10C	A9N2P10D	2
	ŗŗ	16	A9N2P16B	A9N2P16C	A9N2P16D	2
2 4	2 4	20	A9N2P20B	A9N2P20C	A9N2P20D	2
		25	A9N2P25B	A9N2P25C	A9N2P25D	2
	32	A9N2P32B	A9N2P32C	A9N2P32D	2	
	40	A9N2P40B	A9N2P40C	A9N2P40D	2	
						2
		50 63	A9N2P50B A9N2P63B	A9N2P50C A9N2P63C	A9N2P50D A9N2P63D	2
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7101121 002	7101121 000	7101121 002	
The second secon		0.5	-	A9N3PD5C	-	3
- 1	1 3 5	1	-	A9N3P01C	A9N3P01D	3
0 0 0	* * *	2	-	A9N3P02C	A9N3P02D	3
	F	3	-	A9N3P03C	A9N3P03D	3
Name of Street, or other Persons and Perso)))	4	-	A9N3P04C	A9N3P04D	3
	555	6	A9N3P06B	A9N3P06C	A9N3P06D	3
	$\supset \supset \supset$	10	A9N3P10B	A9N3P10C	A9N3P10D	3
		16	A9N3P16B	A9N3P16C	A9N3P16D	3
- Mary Mary	۷ + 0	20	A9N3P20B	A9N3P20C	A9N3P20D	3
A PROPERTY.		25	A9N3P25B	A9N3P25C	A9N3P25D	3
		32	A9N3P32B	A9N3P32C	A9N3P32D	3
		40	A9N3P40B	A9N3P40C	A9N3P40D	3
		50	A9N3P50B	A9N3P50C	A9N3P50D	3
		63	A9N3P63B	A9N3P63C	A9N3P63D	3
		0.5		A0N145550		
		0.5	-	A9N4PD5C A9N4P01C	-	4
		2	-	A9N4P01C A9N4P02C	- A9N4P02D	4
111	1 3 5 7					
0 0 0 0	* $*$ $*$ $*$	3	-	A9N4P03C	A9N4P03D	4
	///	4	- AON14D00D	A9N4P04C	A9N4P04D	4
- marin))))	6	A9N4P06B	A9N4P06C	A9N4P06D	4
		10	A9N4P10B	A9N4P10C	A9N4P10D	4
	7777	16	A9N4P16B	A9N4P16C	A9N4P16D	4
	「「「「「	20	A9N4P20B	A9N4P20C	A9N4P20D	4
THE REAL PROPERTY.	2 4 6 8	25	A9N4P25B	A9N4P25C	A9N4P25D	4
		32	A9N4P32B	A9N4P32C	A9N4P32D	4
		40	A9N4P40B	A9N4P40C	A9N4P40D	4
		50	A9N4P50B	A9N4P50C	A9N4P50D	4
		63	A9N4P63B	A9N4P63C	A9N4P63D	4

Miniature Circuit Breakers (MCBs)

C120

10kA & 15kA IEC/EN-60898-1, IEC 60947-2

- C120N/H are higher rating MCBs for Overload and short-circuit protection
- Ensures no accidental contact with live part Finger-proof IP-20 terminals Avoids false insertion of cables and loose termination

- Pull up terminals
 Total Flexibilitity: Line-Load reversibility
 Operational Safety at the downstream Suitabilitity for Isolation
- Field fittable auxiliaries available for advanced protection
- Longer product service life : Good overvoltage withstand capacity: products designed to offer a high industrial performance level

_				
Tec	hn	\sim	חו	oto

Parameter	C120N	C120H
Current Rating	80,100,125	80,100,125A
No. of Poles	1,2,3,4	1,2,3,4
Rated Voltage	240/415V	240/415V
Terminal Capacity	Rigid upto 50 sqmm Flexible upto 35 sqmm	Rigid upto 50 sqmm Flexible upto 35 sqmm
Impulse Withstand Voltage	6KV	6KV
Breaking Capacity	10KA as per IEC 60898-1	15KA per IEC 60898-1
Energy limiting class	3	3
Operating Temperature	-30 to 70°C	-30 to 70°C

ϵ	IEC	ComReady Auxiliary
MCB		

			C120N	C120H	
Poles		Rating (A)	Refere	ences	Module Width
		C Curv		ırve	
		80	A9N18357	A9N18446	1.5
	1 V	100	A9N18358	A9N18447	1.5
0=	杢	125	A9N18359	A9N18448	1.5

80	A9N18365	A9N18468	4.5
100	A9N18367	A9N18469	4.5
125	A9N18369	A9N18470	4.5

80	A9N18372	A9N18479	6
100	A9N18374	A9N18480	6
125	A9N18376	A9N18481	6

^{**}Module width - 18mm/Module

Miniature Circuit Breakers (MCBs)

C60H-DC

250Vdc per Pole IEC/EN 60947-2

Exclusively designed to take care of all issues in DC installations to ensure complete Short circuit and Overload Protection

- Widest Range 0.5A to 63A
- Ensures no accidental contact with live part Fingerproof IP-20 terminals
- Avoids false insertion of cables and loose termination: Pull up terminals:
- Operational Safety at the downstream Suitability for Isolation
- Field fittable auxiliaries available for advanced protection & monitoring

_		
lec	hnical	LI)ata

Parameter	C60H-DC
No of Poles	1,2
Datad Valtage	250VDC (1P)
Rated Voltage	500VDC (2P)
Terminal Capacity	Rigid upto 35 sqmm Flexible upto 25 sqmm
Impulse Withstand Voltage	6kV
Breaking Capacity	6kA
Energy limiting class	3
Operating Temperature	-25 to 70°C

es			1P	2P
	_	Rating (A)	Refer	ences
are.	1.	- 1 1		ve C
0	<u>*</u>	0.5	A9N61500	A9N61520
	\	1	A9N61501	A9N61521
)	2	A9N61502	A9N61522
	2	3	A9N61503	A9N61523
	+	4	A9N61504	A9N61524
		5	A9N61505	A9N61525
10		6	A9N61506	A9N61526
		10	A9N61508	A9N61528
,		13	A9N61509	A9N61529
		15	A9N61510	A9N61530
	- +	16	A9N61511	A9N61531
ever.	11 31	20	A9N61512	A9N61532
10	1 3 ± ±	25	A9N61513	A9N61533
	\	30	A9N61514	A9N61534
	77	32	A9N61515	A9N61535
JI		40	A9N61517	A9N61537
THE PERSON NAMED IN COLUMN 1	2 4	50	A9N61518	A9N61538
		63	A9N61519	A9N61539

NG125N (25kA) MCB

(NIG125NI.	1P)

В	
Current Rating	10-125A
Poles	1/2/3/4P
Rated Voltage	240/415V
Tripping Curves	B,C,D
Thermal Tripping	40°C
Breaking Capacity	25KA
Degree of Pollution	3
Operating Temperature	-30 to +70°C
Standard	IEC/EN 60947-2

NG125H (36kA) MCB

(NG	125H	4P)

j	В	
	Current Rating	10-80A
	Poles	1,2,3,4 P
		240/415V
	Tripping Curves	С
	Thermal Tripping	40°C
	Breaking Capacity	36KA
	Degree of Pollution	3
	Operating Temperature	-30 to +70°C
	Standard	IEC/EN 60947-2

NG125L(50kA) MCB

Current Rating	10-80A
Poles	1,2,3,4P
Rated Voltage	240/415V
Tripping Curves	B,C,D
Thermal Tripping	40°C
Breaking Capacity	50KA
Degree of Pollution	3
Operating Temperature	-30 to +70°C
Standard	IEC/EN 60947-2

LIL MCF

Туре	UL_1077 MCB	UL_489 MCB
Poles	1,2,3,4	1,2,3
Tripping Curves	B,C	С
Voltage Rating	240/415	240/415V
Breaking Capacity	10kA	10kA
Degree of Pollution	3	3
Operating Temperature		(-30 to 70°C)
Standard	IEC 60947-2/UL 1077/CSA	IEC 60947-2/ UL 489

C60NA-DC		
		20 A: 650 V DC
	Operating voltage (Ue)	30 A: 500 V DC
	Operating voltage (Ge)	40 A: 400 V DC
- Technical		50 A: 300 V DC
VI # 1	Rated insulation	1,000 V DC
	voltage (Ui)	1,000 V DC
W	Rated operational current (le)	50A
	Impulse voltage (Uimp)	6kV
	Number of poles	2P
	Standards	IEC/EN 60947-3

 $^{^{\}star\star}$ For more details Please contact Schneider-Electric Customer Care Centre (Email: customercare.in@schneider-electric.com)

Build your Installation Efficiently

> Cost Efficient

- Upto 40%* reduction in Control & Power wiring
- Upto 25% savings on Installation cost by replacing conventional electrical panels by Distribution Boards

> Time Efficient

- Upto 15%* time savings on Design and Installation by using smart connections with pre-fabricated wiring

> Space Efficient

- Upto 35%* reduction in space utilization by using modular FD range

REACH and RoHS

compliant

^{*} Over conventional communication system

For Effective Protecton against

- > Electrocution due to Direct and Indirect Contact & Earth leakages
- > Personal Protection 30mA
- > Fire Protection 100mA & 300mA

Key Benefits

- Widest range: Precise solution for all application
 - > Rating up to 125A
- Easy monitoring: Earth fault indication on front face
- Immunity against nuisance tripping
- New SI RCDs offers enhanced immunity to electrical disturbances and polluted & corrosive environments
- Easy Installation: bi-connect terminals
- Field fittable auxiliaries for advanced protection & monitoring
- Field fittable Comm ready auxiliary for remote monitoring of:
 - Status of RCD ON / OFF / Trip
 - Number of ON / OFF operations
 - Number of tripping due to faults
 - Number of running hours

Suitable for

ComReady Auxiliary

Residual Current Devices (RCDs)

xID & ID125 RCCBs

Technical Data

IEC/EN 61008-1, IS-12640-1

- Current Rating upto 125A
- Class AC for normal installation
 Class Si for electrically disturbed networks (with harmonics, pulsating DC components etc.) & for harsh environments (presence of corrosive atmosphere chemical gases etc)
- Front face trip on fault indication
- Finger-proof IP-20 terminals ensures no accidental contact with live part
- Test button to check healthiness
- Intermediate auxiliary required for add-on protection and indication auxiliaries
- ID125 RCCBs are suitable for indication OFsp auxiliary only
- 4P RCCB is also suitable for 3phase 3 wire installation

Туре	xID*#	xID#	ID 125
Class	AC	Si	AC/Si
Current Rating	25-80A	25-63A	125A
Sensitivity	30/100/300mA	30/300mA	30/100/300mA
Poles	2,4	2,4	2,4
Rated Voltage	230-415V	230-415V	230-400V
	Rigid - 35 sqmm	Rigid - 35 sqmm	Rigid - 50 sqmm
Terminal Capacity	sqmm	Flexible - 25 sqmm	Flexible - 35 sqmm
Impulse Withstand Voltage	6KV	6KV	6KV
Operating Temperature	-5 to 40°C	-25 to 40°C	-5 to 40°C

xID & ID 125		D. II. (A)		References		NA 1 1 NAC 111
Poles	Type	Rating (A)	30mA	100mA	300mA	Module Width
₽P						
		25	A9N16201	-	A9N16202	2
Marin Carlo		40	A9N16204	A9N16205	A9N16206	2
9 9	AC	63	A9N16208	A9N16209	A9N16210	2
		80	A9N16212	A9N16213	A9N16214	2
		125	16966	-	16967	2
S proper		25	A9N16234		-	2
	SI	40	A9N16237		-	2
	Oi Oi	63	A9N16240		A9N16246	2
The second secon		125	16972		16973	2
IP						
IP		25	A9N16251	-	A9N16252	4
P		40	A9N16251 A9N16254	- A9N16255	A9N16252 A9N16256	4 4
P	AC	40 63		A9N16255 A9N16259		
9 9 9 9	AC	40 63 80	A9N16254 A9N16258 A9N16261	A9N16255 A9N16259 A9N16262	A9N16256 A9N16260 A9N16263	4 4 4
9 9 9	AC	40 63 80 125	A9N16254 A9N16258 A9N16261 16905	A9N16255 A9N16259	A9N16256 A9N16260	4 4 4 4
P 9 9 9	AC	40 63 80 125 25	A9N16254 A9N16258 A9N16261 16905 A9N16321	A9N16255 A9N16259 A9N16262	A9N16256 A9N16260 A9N16263	4 4 4 4
		40 63 80 125 25 40	A9N16254 A9N16258 A9N16261 16905 A9N16321 A9N16324	A9N16255 A9N16259 A9N16262	A9N16256 A9N16260 A9N16263 16907	4 4 4 4 4 4
	AC SI	40 63 80 125 25	A9N16254 A9N16258 A9N16261 16905 A9N16321	A9N16255 A9N16259 A9N16262	A9N16256 A9N16260 A9N16263 16907	4 4 4 4

Residual Current Devices (RCDs)

DPN N Vigi RCBO

IEC/EN 61009-1

- Compact space saving design 2Pole 2Module The DPN N Vigi residual current device provides complete protection for final circuits (against overcurrent and earth leakage faults)
 The new SI RCCB offers perfect protection in installations disturbed by:
 > extreme atmospheric conditions (humid, corrosive)

 - > any type of electrical impurity
- Avoids false insertion of cables and loose termination : Pull up terminals
- Immune to nuisance tripping due to Transient overvoltages

Type	AC	Si
Current Rating	6-40A	6-40A
Sensitivity	30/300mA	30/300mA
Poles	1P+N	1P+N
Curve	С	С
Rated Voltage	230-415V	230-415V
Terminal Capacity	Rigid upto 16 sq mm	Rigid upto 16 sq mm
тегліпаї Сарасіту	Flexible upto 10 sq mm	Flexible upto 10 sq mm
Impulse Withstand Voltage	4kV	4kV
Breaking Capacity	6kA	6kA
Limitation Class	3	3
Operating Temperature	-5 to 40°C	-25°C to +60°C

RCBO iDPN N Vigi						
Poles				References		
roles		Type	Type Rating (A)	30mA	300mA	Module Width
				CC	urve	
1P+N						
			6A	A9N19661	A9N19681	2
Charles .	N 1		10A	A9N19663	A9N19683	2
00	/ / / - - ⊞ -		16A	A9N19665	A9N19685	2
2.0	<u> </u>	AC	20A	A9N19666	A9N19686	2
250	E-\		25A	A9N19667	A9N19687	2
3			32A	A9N19668	A9N19688	2
	# T		40A	A9N19669	A9N19689	2
4			6A	A9N19631	A9N19641	2
-	N 2		10A	A9N19632	A9N19642	2
-00			16A	A9N19634	A9N19644	2
		SI	20A	A9N19635	A9N19645	2
			25A	A9N19636	A9N19646	2
			32A	A9N19637	A9N19647	2
			40A	A9N19638	A9N19648	2

Residual Current Devices (RCDs)

Vigi xC60 (add on RCD - AC Type)

IEC/EN 61009-1 30mA/300mA

Key Features

- Combined with xC60 circuit breaker, the Vigi xC60 provide: Protection against earth leakage, short circuit and Overload faults - add on block for xC60 MCB
- Fault tripping is indicated by a red mechanical indicator on the front face
- Combinations of Vigi xC60 + xC60 MCB Flexibility to choose MCB (xC60 range) as per load requirement
- Field fittable auxiliaries available

Technical Data

	Vigi xC60	Vigi C120
Type	AC	AC/A/Si
Current Rating	25-63A	125A
Sensitivity	30/100/300mA	30/ 300/500/300S/1000 mAS
Poles	2,4	2P,3P,4P
Rated Voltage	230-400V	230-415V
Terminal Capacity	Rigid - 25A - 25 sq mm 63A - 35 sq mm	Rigid - 50 sq mm
reminal Capacity	Flexible - 25A -16 sq mm 63A - 25 sq mm	Flexible - 35 sq mm
Impulse Withstand Voltage	6KV	6KV
Operating	-5°C to +60°C	5°C to +60°C-AC
Temperature	-5-0 10 +60-0	25°C to +60°C-Si

Type AC	Sensitivity		References		Module Width
	Sensitivity	30mA	100mA	300mA	Wodule Widti
P.P.					
	25 A	A9N26581	A9N26582	A9N26583	1.5
E TOTAL CONTRACTOR OF THE PARTY	63 A	A9N26611	A9N26612	A9N26613	2
P 2	125A	A9N18563		A9N18564	3.5
Silveria.					
NAME OF THE PARTY	Module Width				
P		A9N26595	A9N26596	A9N26597	1 3
P	25 A	A9N26595 A9N26643	A9N26596 A9N26644	A9N26597 A9N26645	3
IP		A9N26595 A9N26643 A9N18569	A9N26596 A9N26644	A9N26597 A9N26645 A9N18570	3 3.5 5

RED: a NEW range of Recloser Earth Leakage Devices

The RED provides solution that is:
 Simple: Complete product for protection against Earthleakage and resetting.
 Reliable: System is restored to operation quickly, in optimum safety conditions.

Reclosure Operation

- The built-in automatic recloser automatically recloses the residual current device after checking insulation of the installations.
- If the installation is still faulty: in this case a new check willbe carried out in 15mins.
- If the fault was temporary and has disappeared: the recloser automatically recloses the REDs.

Current Rating	25-100A
Voltage rating (Ue)	230 V AC
Impulse withstand voltage (Uimp)	4 kV
Sensitivity	30mA/300mA
Class	A (Protection in presence of DC components in the circuit)
RED status indication	Mechanical: by O-I (open-closed) 2-position lever
RED Status indication	Electrical: by 1 red indicator light on the front panel
Torminal Canacity	Flexible upto 25 sqmm
Terminal Capacity	Rigid upto 35 sqmm

^{**} For more details Please contact Schneider-Electric Customer Care Centre (Email: customercare.in@schneider-electric.com)

Govern your System Efficiently

> Reduced Downtime

- Centralized and Detailed load control
- Remote monitoring through universal MODBUS protocol
- 100% preventive maintenance

For Effective Protection Against Surges caused due to:

- Direct Lightening Strike
- > Type 1 SPD
- Indirect Lightening Strike > Type 2 SPD
- Switching Surges
- > Type 2 SPD

Key Benefits

- Withdrawable type: Easy Replacement
- Inbuilt SPD health indicator
- Special SPDs for photovoltaic application and low voltage applications
- Also available with remote signaling
- Unique Quick PRD SPDs with inbuilt MCB protection
- Remote monitoring possible via Smart Link through inbuilt indication auxiliary for SPD health status

Surge Protection Devices (SPDs)

PRD 125r

Type 1+2 SPDs

IEC 61643-1 T1 : IEC 61643-1,T2 EN 61643-11 Type 1 : EN 61643-11,Type 2

Key Features

- Integrated solution with type1 & type2 Surge Protection levels
- To protect against direct, indirect lightening surges and switching surges
- Fitted with a remote indication contact for end-of-life indication
- Low Response time ≤ 25 ns
- Easy-to-replace withdrawable cartridges.
- Level of protection (Up) < 1.5kV

Technical Data

PRD1 25r		
Operating frequency		50 Hz
limp / lmax		25kA/40kA
	Local notification	White: correct operation
End-of-life indication ————————————————————————————————————		Red: at end of life
Life-or-life indication	Remote	
	notification	0.2 A/125 V DC
By tunnel terminal	Rigid Cable	2.535 mm
by turner terminal	Flexible Cable	2.525 mm
Operating temperature		-25°C to +60°C
	Type 1	IEC 61643-1 T1
Standards	iybe i	EN 61643-11 Type 1
Stanuarus	Type 2	IEC 61643-1 T2
	Type 2	EN 61643-11 Type 2
Continuous operating volt	age (UC)	350 V

Spare cartridge	Spare cartridge			
Ph	Phase			
Type 1	Type 2	Neutral		
16315	16316	-		
16315	16316	16317		
3 x 16315	3 x 16316	-		
3 x 16315	3 x 16316	16317		
	Ph Type 1 16315 16315 3 x 16315	Phase Type 1 Type 2 16315 16316 16315 16316 3 x 16315 3 x 16316		

Surge Protection Devices (SPDs)

iPRD Surge Arrestors

Type 2 and 3 SPDs (Withdrawable Surge Arrestors) IEC 61643-1 T2 and EN 61643-11 Type 2

Key Features

- SPD Type 2 & Type 3
- Effective protection against
 - Indirect lightening surges
 - Switching surges
- Response time < 25 ns
- Brings down surge voltage level to less than 800V (which is much lesser than the safe voltage of 1.5kA of Sensitive-category 1 equipments) in Cascading
- SPD Type 3
 Secondary protection: placed near the loads to be protected when they are at a distance of more than 30 m from the incoming surge iPRD8

Technical Data

Main characteristics		iPRD Surge Arrestors	
Operating voltage (Ue)		230/400 V AC	
Imax		8kA to 65kA	
Type of Protection		65kA to 20kA - Type 2 &	
Type of Protection		8kA - Type3	
End of life indication: By mechanical	White	In operation	
indicator	Red	At end of life	
End of life remote indication		By contact NO, NC 250 V/	
End of the remote indication		0.25A	
Operating temperature		-25°C to +60°C	
Type of connection terminals		Rigid upto 25 sqmm	
Type of connection terminals		Flexible upto 16 sqmm	

PRD		References				
Poles	lmax/ln	lmax/ln	lmax/ln	lmax/ln	Module Width	
IP	65 kA / 20 kA	40 kA / 15 kA	20 kA / 5 kA	8 kA / 2.5 kA		
	A9L16556				1	
		A9L16561 **			1	
		A9L16566			1	
			A9L16571		1	
				A9L16576	1	
• n • 1		A9L16562 ** A9L16567	AQL 16572		2 2	
4.0			A9L16572	AOL 10577	2	
				A9L16577		
•						
P	A9L16443				3	
		A9L16445 **			3	
000		A9L16568			3	
			A9L16447		3	
277 277				A9L16449	3	
					3	

A9L16559				4
	A9L16564 **			4
	A9L16569			4
		A9L16574		4
			A9L16579	4

Spare cartridges for

Type	SPD	Reference
C 65-460	iPRD65r IT	A9L16682
C 65-340	iPRD65r	A9L16681
C 40-460	iPRD40r IT	A9L16684
C 40-340	iPRD40, iPRD40r	A9L16685
C 20-460	iPRD20r IT	A9L16686
C 20-340	iPRD20, iPRD20r	A9L16687
C 8-460	iPRD8r IT	A9L16688
C 8-340	iPRD8, iPRD8r	A9L16689
C neutral	All products	A9L16691

Surge arrester/circuit breaker association				
Type of surge arrester	Associated circuit breaker			
Type of surge arrester				
iPRD65	Curve C 50 A			
iPRD40	Curve C 40 A			
iPRD20	Curve C 25 A			
iPRD8	Curve C 20 A			
	•			

Red - At the end of life

Protection Devices

Surge Protection Devices (SPDs)

iQuick PRD: Compact: SPD + Inbuilt MCB Type 2 or Type 3 (Withrawable type) 50/60 Hz Operating frequency Operating voltage (Ue) 230/400 V AC 40kA - High risk level 20kA - Moderate Risk level Type2 Imax Rating ТуреЗ 8kA - Protection of the nearby loads located at more than Response time <25ns Operating temperature -25°C to +70°C Remote indication end of life By the NO/NC remote indication contact 250 V AC / 2 A Status Indication White - Operational

PRC, iPRI surge arresters Surge Pr	otection for communication systems (Analog &	Digital)	
	Characteristics	iPRC	iPRI
and and	Number of protected lines	2	2
200 200 200 200	Limitation voltage (Up)	300 V	70 V
2" 22	Rated discharge current (8/20) (In)	10 kA	10 kA
7 7	Maximum discharge current (8/20) (Imax)	18 kA	10 kA
the state of the s	Response time	< 500 ns	< 1 ns
200 200 200	Nominal impulse current	100 A	70 A
ent ent	Rated current (IN)	450 mA (up to 45°C)	300 mA (up)
	Series resistor	2.2 0	4.7 O
	End-of-life information by	Loss of dialling tone	Loss of transmission

iPRD PV-DC surge arresters Surge Prote IEC 61643-1 T2/EN 61643-11 Type 2	ection for Photovoltaic Applications		
According to the control of the cont	Type of network	Isolated direct current	
- = = =	Response Time	<25ns	
	Short circuit current (ISCPV)	30 A	
	Type of surge arresters	Type2	
	End-of-life indication mode	Available	
	Operating temperature	-25°C to +60°C	
	Rated Voltage	650	
	hated voitage	1000 VDC	

^{**} For more details Please contact Schneider-Electric Customer Care Centre (Email: customercare.in@schneider-electric.com)

- Total flexibility all auxiliaries are Field fittable
- Clip-fit design does not require any tool to fit
- Ease selection Same aux is suitable for xC60 and C120 range of MCBs and RCCBs
- Modular Design fits in regular distribution boards
- Quality Assurance conform to global standards
- Advance protection and Control:
 - Undervoltage protection : MN
 - Overvoltage Protection : MSU
 - Remote tripping of Devices : MX+OF

Auxiliaries for Protection Devices (Tripping & Indication)

MN

- Instantaneous Undervoltage Release
- Causes the device with which it is associated to trip when input voltage decreases (between 70 % and 35 % of Un)

Rated Voltage	220-240V, 48V AC	
	48V DC	
Mechanical state indicator	Front face	
Width in 18mm module	1	
	A9N26960 (220-240V,	
Reference Number	48V AC)	
	A9N26961 (48V DC)	

MNx

- Independent of Supply
- Tripping of the associated device by opening of the control circuit
- A drop in the supply voltage does not trip the associated device.

Rated Voltage	230V, 240V AC
Mechanical state	Front face
indicator	
Width in 18mm mod	ule 1
Reference Number	A9N26969 (230 V AC)
	A9N26971 (400 V AC)

MX

- Shunt Release
- Trips the associated device when it is powered on
- Emergency stop via a normally-open pushbutton

Rated Voltage	100-415V, 48V, 12-24V AC, 110-130V, 48V, 12-24V DC	
Mechanical state indicator	Front face	
Width in 18mm module	1	
Reference Number	A9N26476 (110-415V AC, 110-130 VDC)	
	A9N26478 (12-24VAC/ DC) A9N26477 (48 V A/DC)	

OF+SD/OF

On/Off + Trip on Fault auxiliary
 Double open/closed or fault indicating contact.

 Two-in-one product: OF+SD or OF+OF

Rated Voltage	24-415V AC
Rated Voltage	24-130V DC
Test function	Front Face
Mechanical state indicator	Front face
Width in 18mm module	0.5
Reference Number	A9N26929

OF+SD24

Double changeover contact which can report to Acti 9 smartlink or programmable logic controller:

- Electrical fault
- Actuation of the tripping auxiliary
- Open/Closed position of the associated device

The decement device.		
Rated Voltage	24V DC	
Test function	on toggle	
Mechanical state	Front face	
indicator	Tiont face	
Width in 18mm module	0.5	
Reference Number	A9N26899	

MNs

- Delayed Undervoltage Release
- Causes the device with which it is associated to trip when input voltage decreases (between 70 % and 35 % of Un
- No tripping in case transient voltage drops (up to 0.2s)

ĮI.	sieni vollage urops (up	10 0.25)
	Rated Voltage	220-240V AC
	Mechanical state	Front face
	indicator	T TOTIL TAGE
	Width in 18mm module	1
	Reference Number	A9N26923

MSU

• Overvoltage Release

Cuts off the power supply by opening the device with which it is associated when the phase/neutral voltage is exceeded

Rated Voltage	230V AC
Mechanical state	Front face
indicator	
Width in 18mm module	1
Reference Number	A9N26500

OF (On/Off)

 Changeover contact indicating the "open" or "closed" position of the associated device

Rated Voltage	24-415V AC
	24-130V DC
Test function	Front face
Width in 18mm module	0.5
Reference Number	A9N26924

OF.S

 Changeover contact indicating the "open" or "closed position of the associated device

Detect Voltage	Dotad Valtage	24-415V AC
	Rated Voltage	24-130V DC
	Width in 18mm module	0.5
	Reference Number	A9N26923

Compulsory for the addition of tripping or indication auxiliaries on xID RCCBs

SD

- Faull indicating contact
- Changeover contact indicating position of associated device in event of electrical fault

Rated Voltage	24-415V AC
	24-130V DC
Test function	Front face
Width in 18mm module	0.5
Reference Number	A9N26927

Acti 9 | Advanced Communication Technology that Inspires.....

Meets the challenge of all your applications

Detailed load control, reduced downtime, and accurately planned maintenance

Ready to connect to any facility management solution

Quick and easy control wiring enables complete control of your installation

Communication Ready Devices

Reflex iC60

IEC/EN 60947-2

- Remote control by latched and/or impulse order according to 3 modes.
- Circuit breaker provides protection against:
 - Overload currents
 - Short-circuit currents
 - Disconnection in the industrial sector
- 3 operating modes: For various applications
- For safe lock down: Integrated Padlocking
- Simplified maintenance: Front face indicator allows better reliability
- The Ti24 interface also allows fast, reliable connection of the Reflex iC60 to the Acti 9 Smartlink thanks to the prefabricated cables.

Technical Data			
Rating		10 to 63A	
Poles		2P/3P/4P	
Supply Voltage		230VAC - 50Hz	
	Inputs (Y1/Y2)	230 V AC - 5 mA	
Control voltage		2448 V AC/DC	
	Input (Y3)	24 V DC - 5.5 mA	
Rated impulse withstand Votlage		Set to Disconnected - 6kV	
		Set to Ready - 4kV	
Breaking capacity		20kA	
Operating Temp		-25°C to + 60°C	
		upto 25A:	
	Power	Rigid: 25 sqmm; Flexible: 16sqmm	
	connection	above 25A :	
Terminal Capacity		Rigid: 35 sqmm; Flexible: 25sqmm	
		Power supply: Rigid: 10 sqmm;	
	Control Con-	flexible: 6 sqmm	
	nection	Outputs: 2.5 sqmm	
		Ti24 interface upto 1.5 sqmm	

Comm Ready Devices										
Туре	Rating		2P			3P			4P	
Curve	(ln)	В	С	D	В	С	D	В	С	D
Reflex iC60N With Ti24 interface										
	10A	A9C61210	A9C62210	A9C63210	A9C61310	A9C62310	A9C63310	A9C61410	A9C62410	A9C63410
- TIFEE	16 A	A9C61216	A9C62216	A9C63216	A9C61316	A9C62316	A9C63316	A9C61416	A9C62416	A9C63416
0000	25 A	A9C61225	A9C62225	A9C63225	A9C61325	A9C62325	A9C63325	A9C61425	A9C62425	A9C63425
		A9C61240			A9C61340			A9C61440		
A STATE OF THE PARTY OF THE PAR	63 A	A9C61263	A9C62263	-	A9C61363	A9C62363	-	A9C61463	A9C62463	-
0 1000										
Module Width			4.5			5.5			6.5	

Communication Ready Devices

iCT Contactors

EN 61095, IEC 61095

- For remote control applications in alternative networks:
 - lighting, heating, ventilation, roller blinds, sanitary hot water
 - mechanical ventilation systems, etc
 - load-shedding of non-priority circuits
- 4 operating modes switch on front face:
 - Automatic mode
 - Temporary "ON" mode
 - Permanent "ON" mode
 - Shutdown
- Mechanical contact position indicator
- Safe installation maintenance: lock the contactor in ON position

230-240 V		
400 V AC		
100,000 cycles		
500 V AC		
2		
2.5 kV (4 kV for 12/24/48 V AC)		
-5°C to +60°C (1)		

Comm	Read	y Devices

Rating		Control Voltage Contact		Reference	Module Width	
AC7a	AC7b (VAC)		Contact	neierence	Module Width	
25A	8.5A	230240	1NO	A9C20731	1	

16A	6A	230-240	2NO	A9C22712	1
25A	8.5A	230-240	2NO	A9C20732	1
40A	15A	220-240	2NO	A9C20842	2
63A	20A	220-240	2NO	A9C20862	2

25A	8.5A	220240	3NO	A9C20833	2
40A	15A	220240	3NO	A9C20843	3
63A	20A	220 240	3NO	A9C20863	3

25A	8.5A	220-240	4NO	A9C20834	2
40A	15A	220-240	4NO	A9C20844	3
63A	20A	220-240	4NO	A9C20864	3
63A	20A	220-240	2NO+2NC	A9C20868	3

Communication Ready Devices

iTL Impulse Relay

IEC/EN 60669-2-2

- Used to control, by means of pushbutton, lighting circuits consisting of:
 - Incandescent lamps, low voltage, halogen lamps, etc. (resistive loads)
 - Florescent lamps, discharge lamps, etc. (inductive loads)
 - Safe maintenance: Disconnection of remote control by selector switch
 - Manual Controls on front face: 0-l toggle
 - Mechanical contact position indicator

Technical Data		
Rating		16A/32A
Voltage Rating		230-240VAC, 110V DC
16A		Rigid: Upto 4 sqmm
Terminal Capacity	IOA	Flexible: Upto 4 sqmm
reminal Capacity	32A	Rigid: Upto 4 sqmm
	SZA	Flexible upto 10sqmm
Pollution degree		3
Rated impulse withstand voltage (Uimp)		6 kV
Endurance (O-C)		100,000 cycles (AC22)

Comm Ready Devices iTL impulse relays		Rating		
41	A1 1 A2 2	16A 32A A9C30811 A9C30831	Module 1	Poles 1
0000	A1 3 A2 A2 2 4	A9C30812 A9C30831 + A9C32836	1	2
72000	5 9	A9C30811 + A9C32816 A9C30831 + 2 x A9C32836	2	3
	A1	A9C30814 A9C30831 + 3 x A9C32836	2	4

Communication Ready Devices

Smartlink

Power Supply

Rated Voltage

(Heart of Acti 9 Communication System)

- The Acti 9 Smartlink transmits data from Acti 9 devices to a PLC or supervision system via the Modbus serial line communication network
- Modbus processing interface providing:
 - Circuit Breaker status
 - Energy meter output
 - Contactor/Impulse relay control and status
- Smart functions integrated
 - Energy counting from pulses
 - Average power calculation
 - Event counting
 - Running hours
- Fast, safe and simplified cabling: Pre-fabricated cables

Maximum input current	1.5 A
Maximum inrush current	3A
Meter	Capacity 223 pulses per input
Environmental characteristics	
Operating temperature	-25°C +60°C
Operating temperature	if vertical mounting, limited to 50°C
Degree of protection	3
Input characteristics	
Number of channels	11 2-input channels
Maximum cable lengh	20 m
Rated voltage	24 V DC
Rated current	2.5 mA
Output Characteristics	
Number of output channels	11
Rated voltage	24 V DC
Maximum current	100 mA
Torminal Canacity	Rigid-0.5 to 1.5 mm
Terminal Capacity	Flexible-0.5 to 1.5mm

24 V DC ± 20 %

Smartlink			
	Type	Set	References
	Acti 9 Smartlink with	1	
	+ 240V DC Supply	1	A9XMSB11
	+ ModbusConnector	1	AAVINIODIII
	+ Locking clips for Multiclip 80A	2	

Smartlink Ac	cessories			
Accessories				Reference
Link USB / Modi Prefabricated ca		A9XCATM1		
	With 2	Short: 100 mm	6	A9XCAS06
	connectors	Medium-sized: 160 mm	6	A9XCAM06
		Long: 870 mm	6	A9XCAL06
	With 1	Long: 870 mm	6	A9XCAU06
	connector			
	Connectors	5-pin connectors (Ti24)	12	A9XC2412
	Mounting kit	DIN rail (4 feet, 4 straps, 4 adapters)	1	A9XMFA04
		Multiclip 200 A (4 adapters)	1	A9XM2B04
	Spare parts	Lock for Multiclip 80A (2 clips)	1	A9XMLA02

Communication Ready Devices

Energy Meters

IEC 62053-21 and IEC 61557-12

Key Features

 Digital kilowatt-hour meters designed for sub-metering of active energy (rms) consumed by a single-phase or three-phase electriccircuit with or without distributed neutral.

Technical Data

Designation	iEM2000T	iME	
Rating	0-40 A	0-63 A	
Accuracy Class	1	1	
Consumption	< 10 VA	2.5 VA	
On a setting. To see a section	-25 to 65°C if < 32 A	-25 to 55°C	
Operating Temperature	-25 to 55°C if = 32 A	-25 to 55-C	
LED light indicator	Consumption: 0.3 W		
LED light indicator	Service Life: 100,00 hours		

Phase	Voltage	Metering	Reference Number	Module Width
Single + Neutral	230, +20%	3,200 flashes/kWh	A9MEM2000T	1
		1,000 flashes/kWh	A9M17067	2
Three	400, ±20%	100 flashes/kWh	A9M17076	4
Three + Neutral	230, +20%	100 flashes/kWh	A9M17071	4

Communication Ready Devices

iACT24 (Control and Indication)

Auxiliary for Contactors:

Allows a contactor to be interfaced with the Acti 9 Smartlink interface or a programmable logic controller in 24 V DC

Control Voltage	230V AC (Y2)	
Control Voltage	24V DC (Y3)	
Insulation Voltage	250V AC	
Rated Impulse	8KV	
Withstand Voltage	or v	
Pollution Degree	3	
Width in 18mm module	1	
Operation Voltage	-25 to + 60°C	
Reference Number	A9C15924	

iATL24 (Control and Indication)

• Auxiliary for Impulse Relays:

Allows an impulse relay to be interfaced with the Acti 9 Smartlink interface or a programmable logic controller in 24 V DC

ComReady

Ī	Control Voltage	230V AC (Y2)
	Control Voltage	24V DC (Y3)
	Insulation Voltage	250V AC
	Rated Impulse	8KV
	Withstand Voltage	OI/ V
	Pollution Degree	3
	Width in 18mm module	1
	Operation Voltage	-25 to + 60°C
	Reference Number	A9C15424

Multiclip 80 A

It is a four-pole splitter block 24 modules wide installable on a standard DIN rail.

Rated Current at 40° C	80A
Maximum operating voltage	440 V AC
Rated Insulated voltage	500 V AC
Rated Impulse Withstand Voltage	6 KV
Width in 18mm modules	24
Reference Number	04000

Distribloc 63A/125A splitter block

- 4P Splitter Block mountable on the DIN Rail and modular in shape
- Outgoing feeders are connected at the front, without screws, in spring terminals.
- The tunnel terminals are located to facilitate the insertion of cables and clamping by screws
- The spring contact pressure adapts automatically to the cross section of the conductor. It is independent of the operator.
- In the event of an extension to or modification of the switchboard, connection is very easy.

	Terminal Canacity	Rigid: 25 sqmm
		Flexible: 16 sq mm
	Rated impulse	63A - 6kV
٠	withstand voltage (Uimp)	125A - 8kV
	Operating temperature	-25°C to +60°C
	Voltage rating (Ue)	440VAC
	Module width	4Modules
	Standards	IEC/EN 60947-7-1
		IEC/EN 61420 2

- 2 rows of terminals:
 - 12 connection points for phases (L1, L2, L3)
 - 12 connection points for neutral.

Basic Control and Indication Devices

xSW Isolators

IEC 60669-1; IEC 60947-3

- Utilization category: AC-22
- Suitable for DC supply 1P 48V DC, 2P (in series) -110V DC
- Short circuit withstand 20In for 1sec.
- Operational Safety at the downstream Suitability for Isolation

Technical Data	
Current Rating	40A to 125A
Rated Voltage	240-415 VAC
Insulated Voltage	500V AC
Impulse Withstand Voltage	6KV
Permissible rated short-time	1.25kA for 40A
withstand current (Icw)	2.5kA for 63-125A
Pollution Degree	3
Operating Temperature	-20 to 50°C

Isolators xSW Biconnect				
Poles 2P		Rating	Reference Number	Module Width
2P		40A	A9S2P040	2
0 0	1 3	63A	A9S2P040 A9S2P063	2 2
	′ β ′ β	80A	A9S2P080	2
3P	2 4			
	1 3 5	40A	A9S3P040	3
	111	63A	A9S3P063	3
4P	2 4 6			
41		40A	A9S4P040	4
A THE THE PARTY OF	1 3 5 7	63A	A9S4P063	4
	2 4 6 8	80A	A9S4P080	4
xSW Monoconnect				
2P		100A	A9S2P100	2
No. of the last of		100A 125A	A9S2P100 A9S2P125	2
	1 3 6	1201	7.6021 120	
4P		100A	A994P100	4
	1 3 5 7	100A 125A	A9S4P100 A9S4P125	4 4

Basic Control and Indication Devices

iSSW Changeover Switches

IEC 60947-5-1

- Key FeaturesThese linear switches are used for the manual control of electric circuits.
- Poles: 1P, 2P
- Available in 2 versions:
- 2 Position (Source-1 Source-2) and 3 Position (Source-1 OFF Source-2)
- Swicthing Duty: AC-22

Technical Data	
Current Rating	20A
Voltage Rating	250 V AC
Endurance	30,000 cycles
Pollution Degree	3
Operating Temperature	-20 to 50°C
Terminal Capacity	upto 10sqmm
Pollution Degree	3
Operating Temperature	-20 to 50°C

Changeover Switches (iSSW)				
Poles	2 positions	Contact	References	Module Width
Poles 1P	0 1	1 Changeover Switch	A9E18070	1
	1 4 2 8 6 0 1	2 Changeover Switches	A9E18071	2
	2 4	1 NO + 1NC	A9E18072	1
PP	3 positions	Contact	References	Module width
7	2 4 	1 Changeover Switch	A9E18073	1
	2 4 6 8 1011 \\frac{1}{1} 5	2 Changeover Switches	A9E18074	2

Basic Control and Indication Devices

iPB Switches Push Buttons

IEC 60669-1 and IEC 60947-5-1

Key FeaturesThe pushbuttons are used to control electric circuits by means of pulses.

Technical Data	
Current Rating	20A
Voltage Rating	250 V AC
Endurance	30,000 cycles
Pollution Degree	3
Operating Temperature	-35 to 70°C
LED light indicator	Consumption: 0.3 W
Service Life:	100,00 hours
Service Life.	100,00 110018

Push Buttons						
Single iPB	Contact	Pus	hbutton Colour	Reference Nu		Module Width
	1 NC		Grey	A9E18030		1
<u>Q</u> _			Red	A9E1803		1
	1 NO		Grey	A9E18032	2	1
	1 NO+1 NO	0	Grey	A9E18033	3	1
The same of the sa						
. 6						
7.7						
Double iPB						
, 5 od 5 o 1 o 5	1 NO/ 1 NO	0	Green/ Red	A9E18034	4	1
.63.	1 NO/ 1 NO)	Grey/ Grey	A9E18035		1
The state of the s			· · · · ·	•		
pater.						
Sec.						
344						
. 0						
- 6						
-						
1224						
23"	Contract	Pushbutton	Pausa Curah	Links Colour	Reference	Module Wish
Single + Indication light iPB	Contact	Pushbutton Colour	Power Supply	Light Colour	Reference Number	Module Widt
Single + Indication light iPB	1 NO		110-230	Green	Number A9E18036	Module Widt
Single + Indication light iPB	1 NO 1 NC	Colour	110-230 V AC	Green Red	Number A9E18036 A9E18037	
Single + Indication light iPB	1 NO 1 NC 1 NO		110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1
Single + Indication light iPB	1 NO 1 NC	Colour	110-230 V AC	Green Red	Number A9E18036 A9E18037	1 1
Single + Indication light iPB	1 NO 1 NC 1 NO	Colour	110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1 1 1
Single + Indication light iPB	1 NO 1 NC 1 NO	Colour	110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1 1 1
23"	1 NO 1 NC 1 NO	Colour	110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1 1 1
Single + Indication light iPB	1 NO 1 NC 1 NO	Colour	110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1 1 1
Single + Indication light iPB	1 NO 1 NC 1 NO	Colour	110-230 V AC 12-48	Green Red Green	Number A9E18036 A9E18037 A9E18038	1 1 1

ilL Indicator Lights

Basic Control and Indication Devices

- Key FeaturesLED Indicators
- Longer service lifeLow power consumption
- High visibility

Technical Data	
Operating Frequency	50-60 Hz
Pollution Degree	3
Operating Temperature	-35 to 70°C
LED light indicator	Consumption: 0.3 W
Service Life	100,00 hours

Indicator Lights Single ilL				
2	Colour Red Green Blue Yellow	Voltage 110-230 V AC	Reference Number	Module Width 1 1 1 1
Double ilL				
Double IIL	Green/ Red	110-230 V AC	A9E18325	1
Flashing Light				
2 phase voltage presence indication light	Red	110-230 V AC	A9E18326	1
3-phase voltage presence indication light	Red/ Red/ Red	230-400 V AC (3 phase)	A9E18327	1

SO bells and iRO buzzers

Basic Control and Indication Devices

Key Features

Modular DB mounted bells & buzzers

Technical Data						
Consumption	8-12 V AC 3.6 VA					
Consumption	220-240 V AC 5 VA					
Dograp of protection	IP40 (Device only)					
Degree of protection	IP20 (Device in modular enclosure)					
Operating Temperature	-10 to 40°C					
Sound level (at a distance of 60cm)	SO - 80 dBA iBO - 70 dBA					
Sound level (at a distance of boch)	iRO - 70 dBA					

Control & Indication Devices SO Bell			
	Voltage	Reference Number	Module Width
The same of the sa	230 V AC	15320	1
	230 V AC 8-12 V AC	15320 15321	1
1			
1 December 1			
7/1/2			
1 1//			
111.			
and a			
_			
iRO Buzzer			
	230 V AC	A9A15322	1
The second secon	8-12 V AC	A9A15323	1
) Property of the control of the con			
W.			
<i>''</i> //,			
NJB			

IH and IHP Time Switches

Basic Control and Indication Devices

Key Features

- Automatically switch On and Off loads according to the program entered by the user with 4 keys and a display, they operate on a weekly cycle: the same program is repeated week after week.
- Rating: 16A (can be used for application up to 100A with use of contactor)
- Memory: 56 switching operations and 84 switching operations
- Cycle 24 hrs and/or 7days
- Battery back up 6years (by in-built Li battery) Program from PC version also available 3mode operation - ON-OFF-AUTO
- Available in Digital and Mechanical version

Technical Data						
Designation	IHP 1c IHP+1c		IHP 2c	IHP+2c	IH+1c ARM	IH 1c ARM
Voltage Rating (V AC)		230	±10%		230 +10% -15%	230 ±10%
Consumption	4 VA		7 VA		2.5 VA	
Degree of protection	IP20B					
Operating Temperature	-10 to 5	50°C			-20 to 55°C	-10 to50°C

Control & Indication Time Switches	Туре	Number of channels	Cycle period	Minimum Time between 2 switch- ing operations	Reference Number	Module Width
	IHP 1c	1	24h and/or 7d	1 min.	CCT15720	2.5
[P]T	IHP + 1c	1	24h and/or 7d	1 s	CCT15721	2.5
	IHP 2c	2	24h and/or 7d	1 min.	CCT15722	2.5
	IHP + 2c	2	24h and/or 7d	1 s	CCT15723	2.5
	IH + 1c ARM	1+1	24h + 7d	45 min. + 12h	15366	1
CON .	IH 1c ARM	1 1	24h	15 min.	15336	1
1111					.5500	

A memory key (CT15861) and a programming kit (CCT15860) can be used to duplicate on another IHP+ 1C/2c or to save the program created by the contractor.

> MCB

xC60

C120N, C120H

C60H-DC

NG125 N/L/H

> RCDs

xID RCCB

RCCB-ID 125A

Vigi xC60 25A

Vigi xC60 63A

> SPDs

PRD1 25r

iPRD

Quick PRD

PRI PRC (Special Purpose SPDs)

iPRD PV-DC SPD

> Auxiliaries

OF, SD, OF+SD/OF - MX, MN, MN S, MSU, MX+OF, MNx for DPN, DPN Vigi, C60, C120, ID / RCCB

OF, SD, MN, MX, MNx, MN S for NG125

Ofs for ID / RCCB

> Communication Ready Devices

Reflex iC60

iTL Impulse Relays

iCT 16/25A

iCT 40/63A

Auxiliary for For iCT - iACT24

Auxiliary for iTL Impulse Relays - iATL24

> Accessories

Smartlink

Multiclip

Distribloc 63A

Distribloc 125A

Energy Meter

> Basic Control & Indication Devices

xSwitches (Bi-connect)

xSwitches (Mono-connect)

Changeover switches

Push Buttons

Indicators

SO Bells & iRO Buzzzers

IHP Time Switches

Protection Devices MCBs

The following table indicates the average dissipated power per pole in W for a current equal to the rating of the device and at the operating voltage.

MCBs		
Rating(A)	xC60/C60 H-DC	C120
0.5	2.20	-
1	2.30	-
2	2.60	-
3	2.20	-
4	2.40	-
6	2.70	-
10	1.80	-
16	2.50	-
20	3.00	-
25	3.10	-
32	3.50	-
40	4.30	-
50	4.80	-
63	6.10	-
80	-	3.20
100	-	2.00
125	-	4.10

(Miniature Circuit Breakers)

Tertiary/Industry (IEC 60947-2)

C60 derating table (IEC 60947-2)

C60	Amb	ient te	mpera	ature ((°C)																
Rating	-30	-25	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	+45	+50	+55	+60	+65	+70
0.5 A	0.68	0.67	0.66	0.65	0.64	0.63	0.62	0.61	0.6	0.59	0.58	0.56	0.55	0.54	0.53	0.51	0.5	0.49	0.47	0.46	0.44
0.75 A	0.93	0.92	0.91	0.9	0.89	0.88	0.87	0.86	0.85	0.83	0.82	0.81	0.8	0.79	0.78	0.76	0.75	0.74	0.72	0.7	0.68
1 A	1.31	1.3	1.28	1.27	1.25	1.23	1.21	1.19	1.17	1.15	1.13	1.11	1.09	1.07	1.05	1.02	1	0.98	0.95	0.93	0.91
2 A	2.55	2.59	2.56	2.52	2.49	2.45	2.41	2.37	2.34	2.3	2.26	2.22	2.17	2.13	2.09	2.04	2	1.95	1.91	1.88	1.84
3 A	3.81	4.04	3.98	3.92	3.85	3.79	3.73	3.66	3.59	3.52	3.45	3.38	3.31	3.23	3.16	3.08	3	2.92	2.83	2.82	2.76
4 A	4.9	4.86	4.81	4.76	4.7	4.65	4.59	4.54	4.48	4.42	4.37	4.31	4.25	4.19	4.13	4.06	4	3.94	3.87	3.81	3.74
6 A	7.93	7.82	7.71	7.6	7.49	7.38	7.27	7.15	7.03	6.91	6.79	6.66	6.54	6.41	6.27	6.14	6	5.86	5.71	5.56	5.42
8 A	10.37	10.23	10.09	9.96	9.82	9.68	9.54	9.4	9.25	9.11	8.96	8.81	8.65	8.49	8.33	8.17	8	7.83	7.65	7.47	7.31
10 A	13.3	13.2	13	12.8	12.6	12.4	12.2	12	11.8	11.6	11.4	11.2	10.9	10.7	10.5	10.2	10	9.8	9.5	9.2	9
13 A	17	16.9	16.6	16.4	16.2	15.9	15.7	15.4	15.2	14.9	14.7	14.4	14.1	13.9	13.6	13.3	13	12.7	12.4	12.1	11.8
16 A	20	19.8	19.5	19.3	19.1	18.8	18.6	18.4	18.1	17.9	17.6	17.3	17.1	16.8	16.6	16.3	16	15.7	15.4	15.1	14.8
20 A	26.9	26.6	26.2	25.8	25.4	25	24.6	24.2	23.7	23.3	22.9	22.4	22	21.5	21	20.5	20	19.5	18.9	18.4	17.9
25 A	32.9	32.5	32.1	31.6	31.1	30.7	30.2	29.7	29.2	28.7	28.2	27.7	27.2	26.7	26.1	25.6	25	24.4	23.8	23.2	22.6
32 A	41.5	41.1	40.5	40	39.4	38.9	38.3	37.7	37.1	36.5	35.9	35.3	34.7	34	33.4	32.7	32	31.3	30.6	29.9	29.1
40 A	53.7	52.9	52.2	51.4	50.6	49.8	49	48.2	47.3	46.5	45.6	44.7	43.8	42.9	42	41	40	39	37.9	36.9	35.8
45 A	60.8	60.1	59.2	58.3	57.4	56.5	55.5	54.6	53.6	52.6	51.6	50.5	49.5	48.4	47.3	46.2	45	43.8	42.6	41.4	40.1
50 A	65	64.3	63.5	62.6	61.7	60.8	59.9	59	58.1	57.1	56.2	55.2	54.2	53.2	52.1	51.1	50	48.9	47.8	46.7	45.5
63 A	85.5	84.6	83.3	82	80.7	79.4	78	76.7	75.3	73.9	72.4	70.9	69.4	67.9	66.3	64.7	63	61.3	59.5	57.8	56

C60H-DC derating table (IEC 60947-2)

C60H-DC	Amb	ient te	emper	ature	(°C)																
Rating	-30	-25	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	+45	+50	+55	+60	+65	+70
0.5 A	0.63	0.62	0.61	0.6	0.59	0.58	0.56	0.55	0.54	0.53	0.51	0.5	0.49	0.47	0.46	0.44	0.43	0.41	0.39	0.38	0.36
1 A	1.18	1.17	1.15	1.14	1.12	1.1	1.09	1.07	1.05	1.04	1.02	1	0.98	0.96	0.94	0.92	0.9	0.88	0.86	0.84	0.82
2 A	2.54	2.5	2.45	2.41	2.36	2.31	2.26	2.21	2.16	2.11	2.06	2	1.94	1.88	1.82	1.76	1.7	1.63	1.56	1.48	1.41
3 A	3.78	3.71	3.65	3.58	3.51	3.45	3.38	3.3	3.23	3.16	3.08	3	2.92	2.84	2.75	2.66	2.57	2.48	2.38	2.27	2.17
4 A	5.08	4.99	4.9	4.81	4.71	4.62	4.52	4.42	4.32	4.22	4.11	4	3.89	3.77	3.65	3.53	3.4	3.27	3.13	2.98	2.83
5 A	6	5.92	5.83	5.74	5.66	5.57	5.48	5.39	5.29	5.2	5.1	5	4.9	4.8	4.69	4.58	4.47	4.36	4.24	4.12	4
6 A	7.26	7.15	7.04	6.94	6.83	6.71	6.6	6.48	6.37	6.25	6.12	6	5.87	5.74	5.61	5.47	5.33	5.19	5.04	4.89	4.73
10 A	12.6	12.4	12.2	11.9	11.7	11.5	11.3	11	10.8	10.5	10.3	10	9.7	9.5	9.2	8.9	8.6	8.3	7.9	7.6	7.2
13 A	15.5	15.3	15.1	14.9	14.6	14.4	14.2	14	13.7	13.5	13.3	13	12.8	12.5	12.2	12	11.7	11.4	11.1	10.8	10.5
15 A	18.6	18.3	18	17.7	17.4	17.1	16.7	16.4	16.1	15.7	15.4	15	14.6	14.3	13.9	13.5	13	12.6	12.2	11.7	11.2
16 A	19.4	19.1	18.9	18.6	18.3	18	17.6	17.3	17	16.7	16.3	16	15.7	15.3	14.9	14.6	14.2	13.8	13.4	13	12.5
20 A	24.1	23.7	23.4	23	22.7	22.3	21.9	21.6	21.2	20.8	20.4	20	19.6	19.2	18.7	18.3	17.9	17.4	16.9	16.4	15.9
25 A	30.4	29.9	29.5	29	28.5	28.1	27.6	27.1	26.6	26.1	25.5	25	24.5	23.9	23.3	22.7	22.1	21.5	20.9	20.2	19.6
30 A	37.4	36.7	36.1	35.5	34.9	34.2	33.5	32.9	32.2	31.5	30.7	30	29.2	28.5	27.7	26.8	26	25.1	24.2	23.2	22.3
32 A	38.5	37.9	37.4	36.8	36.2	35.7	35.1	34.5	33.9	33.3	32.6	32	31.4	30.7	30	29.3	28.6	27.9	27.1	26.3	25.5
40 A	48.9	48.2	47.4	46.7	45.9	45.1	44.3	43.5	42.6	41.8	40.9	40	39.1	38.2	37.2	36.2	35.2	34.2	33.1	32	30.8
50 A	59.9	59.1	58.3	57.4	56.5	55.6	54.7	53.8	52.9	52	51	50	49	48	46.9	45.9	44.8	43.6	42.5	41.3	40.1
63 A	78.2	76.9	75.6	74.3	73	71.7	70.3	68.9	67.5	66	64.5	63	61.4	59.8	58.2	56.5	54.7	52.9	51.1	49.1	47.1

C120 derating table (IEC 60947-2)

C120	Ambient temperature (°C)																				
Rating	-30	-25	-20	-15	-10	-5	0	+5	+10	+15	+20	+25	+30	+35	+40	+45	+50	+55	+60	+65	+70
80 A	103.7	102.4	101	99.7	98.3	96.9	95.5	94.1	92.6	91.1	89.6	88.1	86.5	84.9	83.3	81.7	80	78.3	76.5	74.7	72.9
100 A	137.6	135.5	133.5	131.4	129.2	127.1	124.8	122.6	120.3	118	115.6	113.1	110.6	108.1	105.5	102.8	100	97.2	94.2	91.2	88.1
125 A	174.6	171.9	169.2	166.4	163.6	160.7	157.8	154.9	151.8	148.7	145.6	142.4	139.1	135.7	132.2	128.7	125	121.2	117.3	113.3	109.1

(Miniature Circuit Breakers)

Alternative current 50/60 Hz

xC60

According to IEC/EN 60898 (reference temperature 30°C)

Curves B, C, D

Direct current

C60H-DC

According to IEC/EN 60947-2 (reference temperature 25°C)

Curve C

Alternative current 50/60 Hz

C120N/H

According to IEC/EN 60898 (reference temperature 30°C)

Curves B, C, D

Alternative current 50/60 Hz

Reflex iC60N/H

According to IEC/EN 60947-2 (reference temperature 50°C)

Curves B, C, D

Prospective current and real limit current.

Definition

The limiting capacity of a circuit breaker is its ability to lessen the effects of a short circuit on an electrical installation by reducing the current amplitude and the dissipated power.

Benefits of limiting

Long installation service life

Thermal effects

Lower temperature rise at the conductor level, hence increased service life for cables and all components that are not self-protected (e.g. switches, contactors, etc.)

Mechanical effects

Lower electrodynamic repulsion forces, hence less risk of deformation or breakage of electrical contacts and busbars.

Electromagnetic effects

Less interference on sensitive equipment located in the vicinity of an electric circuit.

Savings through cascading

Cascading is a technique derived directly from current limiting: downstream of a current-limiting circuit breaker it is possible to use circuit breakers of breaking capacity lower than the prospective short-circuit current (in line with the cascading tables). The breaking capacity is heightened thanks to current limiting by the upstream device. Substantial savings can be achieved in this way on switchgear and enclosures.

Discrimination of protection devices

The circuit breakers' current limiting capacity improves discrimination with the protection devices located upstream: this is because the required energy passing through the upstream protection device is greatly reduced and can be not enough to cause it to trip. Discrimination can thus be natural without having to install a time-delayed protection device upstream.

Acti 9 circuit breaker current limiting

Profiting from Schneider Electric's experience and expertise in the field of shortcircuit current breaking, the circuit breakers of the Acti 9 range have a top-level current limiting characteristic for modular devices.

This assures them of optimal protection of the entire power distribution system.

100000 10 ms 100000 1000

Representation: Current limiting curves

The current limiting capacity of a circuit breaker is reflected by 2 curves which give, as a function of the prospective short-circuit current (current which would flow in the absence of a protection device):

- the real peak current (limited)
- the thermal stress (in A s), this value, multiplied by the resistance of any element through which the short-circuit current passes, gives the power dissipated by this element. The straight line «10 ms» representing the energy A s of a prospective short-circuit current of a half-period (10 ms) indicates the energy that would be dissipated by the short-circuit current in the absence of limiting by the protection device (see example).

Example

What is the energy limited by an iC60N 25 A circuit breaker for a prospective short-circuit current of 10 kA rms. What is the quality of current limiting?

> as shown in the graph opposite:

- this short-circuit current (10 kA rms) is likely to dissipate up to 1,000 kA2s
- the iC60N circuit breaker reduces this thermal stress to: 45 kA²s, which is 22 times less.

Example of use: Stresses acceptable by the cables

The following table shows the thermal stresses acceptable by the cables depending on their insulation, their composition (Cu or Al) and their cross section. Cross-section values are expressed in mm and stresses in As.

S (mm ²)		1.5	2.5	4	6	10
PVC	Cu	2.97 x 10 ⁴	8.26 x 10⁴	2.12 x 10 ⁵	4.76 x 10⁵	1.32 x 10 ⁶
	Al					5.41 x 10 ⁵
PRC	Cu	4.10 x 10 ⁴	1.39 x 10⁵	2.92 x 10 ⁵	6.56 x 10⁵	1.82 x 10 ⁶
	Al					7.52 x 10 ⁵
S (mm ²)		16	25	35	50	
S (mm²) PVC	Cu	16 3.4 x 10 ⁶	25 8.26 x 10 ⁶	35 1.62 x 10 ⁷	50 3.21 x 10 ⁷	
, ,	Cu Al					
, ,		3.4 x 10 ⁶	8.26 x 10 ⁶	1.62 x 10 ⁷	3.21 x 10 ⁷	

Example

Is a Cu/PVC cable of cross section 10 mm protected by a NG125L device? The above table shows that the acceptable stress is 1.32×106 A s. Any short-circuit current at the point where a NG125L device (Icu = 25 kA) is installed will be limited, with a thermal stress of less than 2.2×105 A s. (Curve on page 280 - 281). The cable is therefore always protected up to the breaking capacity of the circuit breaker.

Limitation curves for network Ue: 220-240 V AC (Ph/N 110-130 V AC)

xC60

Limitation curves for network Ue: 380-415 V AC (Ph/N 220-240 V AC)

xC60

Limitation curves for network Ue: 440 V AC

xC60

iTL impulse relays and iCT contactors

Choice of rating according to load type

Control & Indication Devices

Communication Ready Devices

General comment

Modular contactors and impulse relays do not use the same technologies. Their rating is determined according to different standards and does not correspond to the rated current of the circuit.

For example, for a given rating, an impulse relay is more efficient than a modular contactor for the control of light fittings with a strong inrush current, or with a low power factor (non-compensated inductive circuit).

- Relay rating

 The table below shows the maximum number of light fittings for each relay, according to the type, power and configuration of a given lamp. As an indication, the total acceptable
- the type, power and configuration of a given family. As an indication, the total acceptable power is also mentioned.

 These values are given for a 230 V circuit with 2 active conductors (single-phase phase/neutral or two-phase phase/phase). For 110 V circuits, divide the values in the table by 2.

 To obtain the equivalent values for the entire 230 V three-phase circuit, multiply the number of lamps and the maximum power output:

 □ by √3 (1.73) for circuits with 230 V between phases without neutral;
 □ by √3 for circuits with 230 V between phase and neutral or 400 V between phases.

Note: The power ratings of the lamps most commonly used are shown in bold. For powers not mentioned, use a proportional rule with the nearest values

Choice table

Products			iTL	impulse re	elays	iCT contactors	;		
Type of lamp	Unit power	e of		ximum numb circuit	per of light fittings	for a single-phase	e circuit and max	imum power output	
	power factor correction		167	4	32 A	16 A	25 A	40 A	63/100 A
Basic incandesc	ent lamps. LV	halogen lan	nps. r	eplacement m	i nercury vapour lamp	s (without ballast)		1	
	40 W	J		1500 W	106 4000 W	38 1550 W	57 2300 W	115 4600 W	172 6900 W
	60 W		25	to	66 to	30 to	45 to	85 to	125 to
	75 W		20	1600 W	53 4200 W	25 2000 W	38 2850 W	70 5250 W	₁₀₀ 7500 W
	100 W		16	-	42	19	28	50	73
	150 W		10		28	12	18	35	50
	200 W		8		21	10	14	26	37
	300 W		_	1500 \					
			5	1500 W	13 4000 W		10 3000 W	18 5500 W	25 7500 W
	500 W		3		8	4	6	C000 W	000014/
	1000 W		1		4	2	3	0	0
	1500 W		1		2	1	2	4	5
ELV 12 or 24 V h	= :								_
With	20 W		70	1350 W	180 3600 W	15 300 W	23 450 W	42 850 W	63 1250 W
ferromagnetic transformer	50 W		28	to	74 to	10 to	15 to	27 to	42 to
	75 W		19	1450 W	₅₀ 3750 W	8 600 W	12 900 W	23 1950 W	35 2850 W
	100 W		14	-	37	6	8	18	27
With electronic	20 W		60	1200 W	160 3200 W	62 1250 W	⁹⁰ 1850 W	182 3650 W	275 5500 W
transformer	50 W		25	to	65 to	25 to	39 to	76 to	114 to
	75 W		18	1400 W	₄₄ 3350 W	20 1600 W	28 2250 W	₅₃ 4200 W	78 6000 W
	100 W		14	=	33	16	22	42	60
Fluorescent tube	se with etarter	and ferroma	l Ianeti	ic hallast					
1 tube without	15 W	and ionomic		1250 W	213 3200 W	22 330 W	30 450 W	70 1050 W	100 1500 W
compensation (1	18 W			to	186 to	22 to	30 to	70 to	100 to
	20 W		62	1300 W	160 3350 W	22 850 W	30 1200 W	70 2400 W	100 3850 W
			35	-	93	20	28	60	90
	36 W		31		81	20	28	60	90
	40 W								
	58 W		21	<u>-</u>	55	13	17	35	56
	65 W		20	-	50	13	17	35	56
	80 W		16		41	10	15	30	48
	115 W		11		29	7	10	20	32
1 tube		5 μF	60	900 W	160 2400 W	15 200 W	20 300 W	40 600 W	60 900 W
with parallel compensation (2	18 W	5 μF	50		133	15 to	20 to	40 to	60 to
	20 W	5 μF	45	-	120	15 800 W	₂₀ 1200 W	40 W	₆₀ 3500 W
	36 W	5 µF	25		66	15	20	40	60
	40 W	5 μF	22	•	60	15	20	40	60
	58 W	7 μF	16	-	42	10	15	30	43
	65 W	7 μF	13	-	37	10	15	30	43
		7 µF	11		30	10	15	30	43
	115 W	16 µF	7		20	5	7	14	20
2 or 4 tubes	2 x 18 W	- Pr.	56	2000 W	148 5300 W	30 1100 W	46 1650 W	80 2900 W	123 4450 W
with series	4 x 18 W		28	_000 **	74	16 to	24 to	44 to	68 to
compensation	2 × 36 W		28		74	16 1500 W	24 2400 W	44 10 44 3800 W	68 5900 W
			17	-	45	10	16	27	42
	2 x 58 W			=					
	2 x 65 W		15	-	40	10	16	27	42
	2 x 80 W		12		33	9	13	22	34
	2 x 115 W		8		23	6	10	16	25

iTL impulse relays and iCT contactors (cont.)

Choice of rating according to load type

Control & Indication Devices

Communication Ready Devices

Choice table (cont.)

Products		iTL impulse re	lays	iCT contacto	rs		
Type of lamp	Unit power and	Maximum numb	er of light fittings	for a single-phas	e circuit and maxi	mum power output p	er circuit
	capacitance of power factor correction capacitor	16 A	32 A	16 A	25 A	40 A	63/100 A
Fluorescent tubes	s with electronic ballast						
or 2 tubes	18 W	80 1450 W	212 3800 W	74 1300 W	111 2000 W	222 4000 W	333 6000 W
	36 W	40 to	106 to	38 to	58 to	117 to	176 to
	58 W	26 1550 W	69 4000 W	25 1400 W	37 2200 W	74 4400 W	111 6600 W
	2 x 18 W	40	106	36	55	111	166
	2 x 36 W	20	53	20	30	60	90
	2 x 58 W	13	34	12	19	38	57
Compact fluoresc	cent lamps						
Vith external	5 W	240 1200 W	630 3150 W	210 1050 W	330 1650 W	670 3350 W	Not tested
electronic ballast	7 W	171 to	457 to	150 to	222 to	478 to	
	9 W	138 1450 W	366 3800 W	122 1300 W	194 2000 W	383 4000 W	
	11 W	118	318	104	163	327	
	18 W	77	202	66	105	216	
	26 W	55	146	50	76	153	
Vith integral	5 W	170 850 W	390 1950 W	160 800 W	230 1150 W	470 2350 W	710 3550 W
	7 W	121 to	285 to	114 to	164 to	335 to	514 to
ncandescent	9 W	100 1050 W	233 2400 W	94 900 W	133 1300 W	266 2600 W	411 3950 W
amps)	11 W	86	200 127	78 48	109 69	138	340 213
	18 W	55 40					
. ,	26 W	40	92	34	50	100	151
High-pressure me		40 erromagnetic ballas	92 st without ignitor	34			
High-pressure me Replacement hig Vithout	26 W ercury vapour lamps with fe h-pressure sodium vapour 50 W	40 erromagnetic ballas	92 st without ignitor agnetic ballast with i	34	50 20 1000 W	100 34 1700 W	
High-pressure me Replacement hig Vithout	26 W ercury vapour lamps with fo h-pressure sodium vapour	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3)	50 20 1000 W 15 to	100	151
High-pressure me Replacement hig	26 W ercury vapour lamps with fe h-pressure sodium vapour 50 W	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3)	50 20 1000 W	100 34 1700 W	53 2650 W 40 to 28 4200 W
High-pressure me Replacement hig	26 W ercury vapour lamps with fe h-pressure sodium vapour 50 W 80 W	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15 750 W 10 to 8 1000 W	20 1000 W 15 to 10 1600 W	100 34 1700 W 27 to 20 2800 W	53 2650 W 40 to 28 4200 W
High-pressure me Replacement hig	26 W ercury vapour lamps with for h-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3)	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 10 1600 W	100 34 1700 W 27 to 20 2800 W 10 6	53 2650 W 40 to 28 4200 W
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with fe h-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 10 1600 W 6 4 2	100 34 1700 W 27 to 20 2800 W 10 6 4	53 2650 W 40 to 28 4200 W
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with for h-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 10 1600 W 6 4 2 15 750 W	100 34 1700 W 27 to 20 2800 W 10 6 4 1400 W	53 2650 W to 28 4200 W 15 10 6
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with february vapour sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 10 1600 W 6 4 2 15 750 W 13 to	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to	53 2650 W to
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with for h-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF 125 / 110 W (3) 10 µF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 1600 W 6 4 2 15 750 W 13 to 1600 W	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W	53 2650 W to
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with for h-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF 125 / 110 W (3) 10 µF 250 / 220 W (3) 18 µF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 1600 W 6 4 2 15 750 W 13 to 1600 W 6	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W	53 2650 W to 4200 W 15 10 6 43 2150 W 38 15 30 5000 W 17
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 1600 W 6 4 2 15 750 W 13 to 1600 W 6 4	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W	53 2650 W to 4200 W 15 10 6 43 2150 W 38 30 5000 W 17 12
High-pressure m Replacement hig Vithout compensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF	40 erromagnetic ballas lamps with ferroma	92 st without ignitor agnetic ballast with i	ntegral ignitor (3) 15	20 1000 W 15 to 1600 W 6 4 2 15 750 W 13 to 1600 W 6	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W	53 2650 W to 28 4200 W 15 10 6 43 2150 W 38 30 5000 W 17 12 7
High-pressure me Replacement hig Vithout ompensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF 125 / 110 W (3) 10 µF 250 / 220 W (3) 18 µF 400 / 350 W (3) 25 µF 700 W 40 µF 1000 W 60 µF	40 erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20 1000 W 15 to 1600 W 6 4 2 15 750 W 13 to 1600 W 6 4	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W	53 2650 W to 4200 W 15 10 6 43 2150 W 38 to 5000 W 17 12
High-pressure me Replacement hig Vithout ompensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF 125 / 110 W (3) 10 µF 250 / 220 W (3) 18 µF 400 / 350 W (3) 25 µF 700 W 40 µF 1000 W 60 µF dium vapour lamps with fer	erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20	100 34	53 2650 W 10 28 4200 W 15 10 6 38 to 30 5000 W 17 12 7 5
High-pressure me Replacement hig Vithout compensation (1) With parallel compensation (2)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 µF 80 W 8 µF 125 / 110 W (3) 10 µF 250 / 220 W (3) 18 µF 400 / 350 W (3) 25 µF 700 W 40 µF 1000 W 60 µF dium vapour lamps with fer	40 erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3	53 2650 W to 4200 W 15 10 6 43 2150 W 38 to 5000 W 17 12 7 5 24 850 W
High-pressure me Replacement hig Vithout compensation (1) With parallel compensation (2)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W	erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3	53 2650 W to 4200 W 15 10 6 43 2150 W 38 to 5000 W 17 12 7 5 24 850 W 24 to 151 10 10 10 10 10 10 1
High-pressure me Replacement hig Vithout compensation (1) With parallel compensation (2) Low-pressure south	26 W ercury vapour lamps with fen-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W	erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3	53 2650 W 10 4200 W 15 10 6 43 2150 W 38 10 5000 W 17 12 7 5 24 850 W 24 10 1800 W 17 1800 W 17 1800 W 1800 W
High-pressure me Replacement hig Vithout compensation (1) With parallel compensation (2) Low-pressure south	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W 135 W	erromagnetic ballas lamps with ferroma Not tested, infrequ	92 st without ignitor ignetic ballast with i uent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3 14 500 W 14 to 9 1100 W	53 2650 W 10 28 4200 W 15 10 6 43 2150 W 17 12 7 5 24 850 W 10 10 10 10 10 10 10
High-pressure me Replacement hig Vithout compensation (1) Vith parallel compensation (2) Low-pressure soo Vithout compensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W 135 W	erromagnetic ballast lamps with ferromagnetic ballast Not tested, infrequence of the state of th	g2 st without ignitor ignetic ballast with i lent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3 14 500 W 14 to 9 1100 W	53 2650 W 10 28 4200 W 15 10 6 43 2150 W 38 10 5000 W 17 12 7 5 24 850 W 10 10 10 10 10 10 10
High-pressure me Replacement hig Without compensation (1) With parallel compensation (2) Low-pressure soo Without compensation (1) With parallel	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W 135 W 180 W 20 μF	erromagnetic ballas lamps with ferromagnetic ballast Not tested, infrequence of the second se	st without ignitor ignetic ballast with isent use with external ignitor with isent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 20 3500 W 11 8 5 3 14 500 W 14 to 9 1100 W 6 6 6	53 2650 W 10 28 4200 W 15 10 6 43 2150 W 38 10 5000 W 17 12 7 5 24 850 W 10 10 10 15 550 W 15 550 W 15 550 W 15 15 550 W 15 15 550 W 10 10 15 550 W 10 10 10 10 10 10 10
High-pressure me Replacement hig Vithout compensation (1) Vith parallel compensation (2) Low-pressure soo Vithout compensation (1) Vith parallel compensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W 135 W 180 W 35 W 20 μF	erromagnetic ballas lamps with ferromagnetic ballast Not tested, infrequence of the second se	st without ignitor ignetic ballast with isent use with external ignitor gent use with external ignitor gent use 102 3600 W	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 to 20 3500 W 11 8 5 3 14 500 W 14 to 9 1100 W 6 6	53 2650 W 10 28 4200 W 15 10 6 43 2150 W 38 10 5000 W 17 12 7 5 24 850 W 10 10 15 550 W 15 15 550 W 15 15 15 15 15 15 15
High-pressure me Replacement hig Without compensation (1)	26 W ercury vapour lamps with feh-pressure sodium vapour 50 W 80 W 125 / 110 W (3) 250 / 220 W (3) 400 / 350 W (3) 700 W 50 W 7 μF 80 W 8 μF 125 / 110 W (3) 10 μF 250 / 220 W (3) 18 μF 400 / 350 W (3) 25 μF 700 W 40 μF 1000 W 60 μF dium vapour lamps with fer 35 W 55 W 90 W 135 W 180 W 20 μF	erromagnetic ballas lamps with ferromagnetic ballast Not tested, infrequence of the second se	st without ignitor ignetic ballast with isent use with external ignitor with isent use	ntegral ignitor (3) 15	20	100 34 1700 W 27 to 20 2800 W 10 6 4 28 1400 W 25 20 3500 W 11 8 5 3 14 500 W 14 to 9 1100 W 6 6 6	53 2650 W 10 28 4200 W 15 10 6 43 2150 W 38 10 5000 W 17 12 7 5 24 850 W 10 10 10 15 550 W 15 550 W 15 550 W 15 15 550 W 15 15 550 W 10 10 15 550 W 10 10 10 10 10 10 10

iTL impulse relays and iCT contactors (cont.)

Choice of rating according to load type

Control & Indication Devices

Communication Ready Devices

Choice table (cont.)

Products			iTL	impulse rel	ays		iCT	contactors						
Type of lamp	Unit powe capacitan	ce of		ximum numbe circuit	er of	light fittings fo	or a s	single-phase	circı	uit and maxim	um p	ower output		
	power factor correction capacitor odium vapour lamps		16 A 32 A		4	167	A	25 A		40 A		63/1	00 A	
High-pressure so Metal-iodide lam		r lamps												
With	35 W		Not	tested, infrequ	ent u	se	16	600 W	24	_ 850 W	42	1450 W	64	2250 W
ferromagnetic ballast with	70 W						8		12 7	_ to		to	32	to
external ignitor,	150 W						4			_ 1200 W	2000 W	18	3200 W	
without	250 W						1 0		3		8		11	
compensation (1)	400 W										5		8 3	
With	35 W	6μF	34	1200 W	88	3100 W	12	450 W	18	650 W		1100 W	50	1750 W
ferromagnetic	70 W	12 µF	17	to	45	to	6	to	9	_ 030 vv _ to	_	to	25	to
ballast with external ignitor	150 W	20 µF	8	1350 W	22	3400 W	4	1000 W	6	_2000 W		4000 W	15	6000 W
and parallel	250 W	32 µF	5	-	13	-	3	-	4	_	7		10	-
compensation (2)	400 W	45 µF	3	-	8	-	2	•	3	_	5		7	-
	1000 W	60 µF	1	-	3	-	1	•	2	_	3		5	-
	2000 W	85 µF	0	-	1	-	0	•	1	_	2		3	-
With electronic	35 W		38	1350 W	87	3100 W	24	850 W	38	1350 W		2400 W	102	3600 W
ballast	70 W		29	to	77	to	18	to	29	to		to	76	to
	150 W		14	2200 W	33	5000 W	9	1350 W	14	2200 W	26	4000 W	40	600 W

⁽¹⁾ Circuits with non-compensated ferromagnetic ballasts consume twice as much current for a given lamp power output. This explains the small number of lamps in this configuration.

⁽²⁾ The total capacitance of the power factor correction capacitors in parallel in a circuit limits the number of lamps that can be controlled by a contactor. The total downstream capacitance of a modular contactor of rating 16, 25, 40 or 63 A should not exceed 75, 100, 200 or 300 µF respectively. Allow for these limits to calculate the maximum acceptable number of lamps if the capacitance values are different from those in the table.

⁽³⁾ High-pressure mercury vapour lamps without ignitor, of power 125, 250 and 400 W, are gradually being replaced by high-pressure sodium vapour lamps with integral ignitor, and respective power of 110, 220 and 350 W.

Communication Ready Devices

Heating application
■ Impulse relay rating to be chosen according to the power to be controlled.

230 V heating		
Туре	Maximum power fo	or a given rating
	iTL impulse relays	
Single-phase circuit	16 A	32 A
Heating (AC1)	3.6 kW	7.2 kW

■ Contactor rating to be chosen according to the power to be controlled and the number of operations a day.

230 V heating Type of heating	Maximum	power for a give	n rating	
application	iCT contac		9	
Number of operations / day	25 A	40 A	63 A	100 A
25	5.4 kW	8.6 kW	14 kW	21.6 kW
50	5.4 kW	8.6 kW	14 kW	21.6 kW
75	4.6 kW	7.4 kW	12 kW	18 kW
100	4 kW	6 kW	9.5 kW	14 kW
250	2.5 kW	3.8 kW	6 kW	9 kW
500	1.7 kW	2.7 kW	4.5 kW	6.8 kW
400 V heating				
25	16 kW	26 kW	41 kW	63 kW
50	16 kW	26 kW	41 kW	63 kW
75	14 kW	22 kW	35 kW	52 kW
100	11 kW	17 kW	26 kW	40 kW
250	5 kW	8 kW	13 kW	19 kW
500	3.5 kW	6 kW	9 kW	14 kW

Small motor application

Contactor rating to be chosen according to the power to be controlled.

Asynchronous single	Asynchronous single-phase motor with capacitor											
Small motor	Maximum power f	or a given rating										
application type	iCT contactors	T contactors										
Voltage	25 A	40 A	63 A									
230 V	1.4	2.5	4									
Asynchronous three	-phase motor											
400 V	4	7.5	15									
Universal motor	Universal motor											
230 V	0.9	1.4	2.2									

Basic Control & Indication

Spacer cat. no. A9A27062

Switches

■ In all cases, the switches are correctly protected against overloads by a circuit breaker with a lower or equal rating, operating at the same ambient temperature.

iCT contactors

In the case of contactor mounting in an enclosure for which the interior temperature is in a range between 50°C and 60°C, it is necessary to use a spacer, cat. no. A9A27062, between each contactor.

Splitter blocks

In the event of a temperature higher than 40°C, the maximum acceptable current is limited to the values in the table below:

Туре	Tempera	Temperature											
	40°C	45°C	50°C	55°C	60°C								
Multiclip 80 A	80	76	73	69	66								
Distribloc 63 A	63	60	58	55	53								

Protection discrimination is an essential element that must be taken into account starting at the design stage of a low voltage installation to ensure the highest level of availability for users.

Discrimination is important in all installations for the comfort of users, however it is fundamental in installations requiring a high level of service continuity, e.g. industrial manufacturing processes.

Industrial installations without discrimination run a series of risks of varying importance including:

- production deadline overruns
- interruption in manufacturing, entailing:
- □ production or finished-product losses
- ☐ risk of damage to production machines in continuous processes
- restarting of machines, one by one, following a general power outage
- shutdown of vital safety equipment such as lubrification pumps, smoke fans, etc.

Discrimination, also called selectivity, is the coordination of automatic protection devices in such a manner that a fault appearing at a given point in a network is cleared by the protection device installed immediately upstream of the fault, and by that device alone.

■ total discrimination

Discrimination is said to be total if, for all fault current values, from overloads up to the non-resistive short-circuit current, circuit breaker D2 opens and D1 remains closed.

partial discrimination

Discrimination is partial if the above condition is not respected up to the full shortcircuit current, but only to a lesser value termed the selectivity limit current (Is).

no discrimination

In the event of a fault, both circuit breakers D1 and D2 open.

Total discrimination as standard with Masterpact NT/NW circuit breakers

Thanks to their highly innovative design and the exeptional performance of their control units, the Masterpact NT and NW circuit breakers offer total discrimination with downstream Compact NSX devices up to 630 A as standard (1).

Natural discrimination with Compact NSX circuit breakers

Due to the Roto-active breaking technique employed by the Compact NSX, the combined use of Schneider Electric circuit breakers provides an exceptional level of protection discrimination.

This is the result of the implementation and optimisation of three different techniques:

- current discrimination
- time discrimination
- energy discrimination.

Overload protection: current discrimination

Discrimination is ensured if the ratio between setting thresholds is greater than 1.6 (for distribution circuit breakers).

Low short-circuit protection: current discrimination.

Tripping of the upstream device is slightly delayed to ensure that the downstream device trips first.

Discrimination is ensured if the ratio between the short-circuit thresholds is greater than 1.5. High short-circuit protection: time discrimination.

This protection system combines the exceptional current limiting capacity of the Compact NS and the advantages of reflex tripping, sensitive to the energy dissipated in the device by the short-circuit. In the event of a high short-circuit detected by two circuit breakers, the downstream device limits it sharply. The energy dissipated in the upstream device is not sufficient to trip it, i.e. discrimination is total for all short-circuit currents.

Discrimination is ensured if the ratio between the circuit breaker ratings is greater than 2.

(1) Except for the L1 performance level on Masterpact NT and subject to the discrimination rules on page 558E4300/7.

Discrimination between two distribution circuit breakers.

How to use the discrimination tables

■ for discrimination between 2 distribution circuit breakers

Combinations providing full discrimination are indicated by the symbol T. If discrimination is partial, the table indicates the maximum fault current value for which discrimination is ensured. For fault currents above this value, the 2 circuit breakers trip simultaneously.

Requisite conditions

The values indicated in the tables are valid for operational rated voltages of 220, 380, 415 and 440V:

Upstream	Downstream	Frame up / Frame down	Thermal protection Ir up/Ir down	Magnetic protection Im up/Im down
TM	TM or Multi 9	≥2.5	≥ 1.6	≥2
	Micrologic	≥2.5	≥ 1.6	≥ 1.5
Micrologic	TM or Multi 9	≥2.5	≥ 1.6	≥ 1.5
	Micrologic	≥2.5	≥ 1.3	≥1.5

These conditions ensure that curves don't overlap. Curves could also be checked with Curve Direct software tools

Additional Settings conditions according to trip unit type

■ Short time pick up (Isd)

Tables indicate selectivity limits assuming $Isd = 10 \, x \, Ir$. In many cases when discrimination is Total lower thresholds could be used if ratio condition between two magnetic protections is fulfilled. When selectivity limit indicated in the tables is equal to $10 \, x \, Ir$, the selectivity limit is upstream short time pick up (Isd).

■ Instantaneous pick up (li)

Tables indicate selectivity limits assuming instantaneous pick up is set at the maximum value and when it's inhibited (Type B Circuit breaker only). With Masterpact, when selectivity limit indicated in the tables is equal to 15 x In, the selectivity limit is upstream instantaneous pick up (Ii). When upstream circuit Breaker is A type, and downstream circuit breaker is B type upstream instantaneous setting can be set lower than 15 In as far as it stay higher than downstream circuit breaker reflex tripping limit. When a Micrologic 5.x is used downstream a Micrologic 2.x Tsd shall be set at 0 and Ii shall be set at Isd.

■ Short time delay (Tsd)

When upstream and downstream breaker are equipped with Micrologic 5.x, 6.x, 7.x: the minimum non tripping-time of the upstream device must be greater than the maximum tripping time of the downstream device.

Tsd D1 > Tsd D2 (One Step)

■ I2t Off / On

time condition:

Tables indicate selectivity limits assuming I2t Function is Off. If I2t function is ON user shall check curves.

■ Ground Fault protection (Ig, Tg)

When upstream and downstream breaker are equipped with Micrologic 6.x, user should implement current and time discrimination:

current sensing discrimination

Threshold setting of upstream GFP device tripping is greater than that of the downstream GFP device. Because of tolerances on the settings, a 30 % difference between the upstream and downstream thresholds is sufficient.

□ time graded discrimination

The intentional time delay setting of the upstream GFP device is greater than the opening time of the downstream device. Furthermore, the intentional time delay given to the upstream device must respect the maximum time for the elimination of insulation faults defined by the NEC § 230.95 (i.e. 1s for 3000 A).

lg D1 >= 1,3 lg D2 Tg D1 > Tg D2 (One Step)

■ Earth Leakage Protection (I∆, T∆)

When upstream and downstream breaker are equipped with Micrologic 7.x or Vigi user should implement current and time discrimination: current condition:

The RCD must trip between I Δ and I Δ /2, I n where In is the declared operating current. There must therefore exist a minimum ratio of 2 between the sensitivities of the upstream device and the downstream device. In practice, the standardised values indicate a ratio of 3.

The minimum non-tripping time of the upstream device must be greater than the maximum tripping time of the downstream device for all current values. $|\Delta n D1 u 3x |\Delta n D2|$ $\Delta t D1 > \Delta t D1 (One Step)$

Note: The tripping time of RCDs must always be less than or equal to the time specified in the installation standards to guarantee protection of people against indirect contacts.

Compact NSX motor trip units

- Compact NSX Trip units dedicated to motor protection («M» type) can not be used to ensure discrimination with downstream circuit breaker.
- Furthermore Compact NSX trip unit dedicated to distribution should not be used to protect motors, even motors wit soft starter or speed drive.

Protection discrimination

Upstream: xC60, B curve

Downstream: xC60, B, C, D curves

Upstream		xC60 B curve											
In (A)		2	3	4	6	10	16	20	25	32	40	50	63
Downstream	Rating												
Discrimination I		1		16	O.F.	40	63	80	100	105	160	200	250
xC60	1			16 16	25				100	125	160		
B Curve	2			10	25 25	40 40	63 63	80 80	100	125 125	160	200 200	250 250
	<u>3</u>				25 25	40	63	80	100	125	160	200	250
					25	40	63	80	100	125	160	200	250
	<u>6</u> 10					40	63	80	100	125	160	200	250
	16						63	80	100	125	160	200	250
	20								100	125	160	200	250
	25									125	160	200	250
	32										100	200	250
	40											200	250
	50/63												230
Discrimination I				1									
xC60	1			16	25	40	63	80	100	125	160	200	250
C Curve	2			16	25	40	63	80	100	125	160	200	250
0 000	3				25	40	63	80	100	125	160	200	250
	4					40	63	80	100	125	160	200	250
	6						63	80	100	125	160	200	250
	10							80	100	125	160	200	250
	16									125	160	200	250
	20									125	160	200	250
	25										160	200	250
	32											200	250
	40												250
	50/63												
Discrimination I													
xC60	1			16	25	40	63	80	100	125	160	200	250
D Curve	2				25	40	63	80	100	125	160	200	250
	3					40	63	80	100	125	160	200	250
	4						63	80	100	125	160	200	250
	6							80	100	125	160	200	250
	10									125	160	200	250
	16										160	200	250
	20											200	250
	25												250
	32												
	40												
	50/63												

400 Discrimination limit = 400 A.

Protection discrimination

Upstream: xC60, C curve

Downstream: xC60, B, C, D curves

Upstream		C curve	lo.		10	140	140	loo	lo-	loo	140	1=0	loo
In (A)	Datina	2	3	4	6	10	16	20	25	32	40	50	63
Downstream Discrimination	Rating												
xC60	1		T	32	50	80	125	160	200	250	320	400	500
B Curve	2			32	50	80	125	160	200	250	320	400	500
2 04.70	3				50	80	125	160	200	250	320	400	500
	4				50	80	125	160	200	250	320	400	500
	6					80	125	160	200	250	320	400	500
	10						125	160	200	250	320	400	500
	16								200	250	320	400	500
	20									250	320	400	500
	25										320	400	500
	32											400	500
	40												500
	50/63												
Discrimination				1	1	1	1	1	1	less	less	1	1
сC60	<u>1</u>			32	50	80	125	160	200	250	320	400	500
C Curve	2			32	50	80	125	160	200	250	320	400	500
	3				50	80	125	160	200	250	320	400	500
	4				50	80	125	160	200	250	320	400	500
	6		+			80	125	160	200	250	320	400	500
	10						125	160	200	250	320	400	500
	16		+						200	250	320	400	500
	20									250	320 320	400 400	500 500
	25 32										320	400	500
	32 40											400	500
	50/63	_	+							_	_		300
Discrimination			1										
kC60	1	T	Т	32	50	80	125	160	200	250	320	400	500
O Curve	2			32	50	80	125	160	200	250	320	400	500
5 Gui VC	3				50	80	125	160	200	250	320	400	500
	4		1			80	125	160	200	250	320	400	500
	6						125	160	200	250	320	400	500
	10							160	200	250	320	400	500
	16								200	250	320	400	500
	20										320	400	500
	25											400	500
	32												500
	40												
	50/63												

400 Discrimination limit = 400 A.

Protection discrimination

Upstream: xC60, D curve

Downstream: xC60, B, C, D curves

Upstream		D curve											
In (A)		2	3	4	6	10	16	20	25	32	40	50	63
Downstream Discrimination													
xC60	1			50	72	125	200	250	300	400	500	630	800
B Curve	2			50	72	125	200	250	300	400	500	630	800
	3				72	125	200	250	300	400	500	630	800
	4				72	125	200	250	300	400	500	630	800
	6					125	200	250	300	400	500	630	800
	10						200	250	300	400	500	630	800
	16								300	400	500	630	800
	20									400	500	630	800
	25										500	630	800
	32											630	800
	40												800
	50/63												
Discrimination	limit (A)												
кC60	1			50	72	125	200	250	300	400	500	630	800
C Curve	2			50	72	125	200	250	300	400	500	630	800
	3				72	125	200	250	300	400	500	630	800
	4				72	125	200	250	300	400	500	630	800
	6					125	200	250	300	400	500	630	800
	10						200	250	300	400	500	630	800
	16								300	400	500	630	800
	20									400	500	630	800
	25										500	630	800
	32											630	800
	40												800
	50/63												
Discrimination		_	-			-,							
кC60	1			50	72	125	200	250	300	400	500	630	800
D Curve	2			50	72	125	200	250	300	400	500	630	800
	3				72	125	200	250	300	400	500	630	800
	4				72	125	200	250	300	400	500	630	800
	6					125	200	250	300	400	500	630	800
	10						200	250	300	400	500	630	800
	16								300	400	500	630	800
	20									400	500	630	800
	25										500	630	800
	32											630	800
	40												800
	50/63												

400 Discrimination limit = 400 A.

Protection discrimination

Upstream: C120, H, B Curve

Downstream: xC60, B, C, D curves

Upstream		C120H B curve										
ln (A)		10	16	20	25	32	40	50	63	80	100	125
Downstream Discrimination lin	Rating nit (A)											
xC60	1	300	500	700	1000	1500	2000	2500	T	T	T	Т
D Curve	2	150	300	500	700	1000	1500	2000	Т	Т	T	Т
	3	40	63	300	500	700	1000	1500	Т	Т	T	Т
	6		63	80	400	500	700	800	3000	Т	Т	Т
	10				100	350	500	600	1800	3000	4000	Т
	16						340	450	1000	2000	3300	3700
	20							200	1000	1600	2500	3700
	25								800	1300	2100	3700
	32									1000	1800	2700
	40										1600	2400

400 Discrimination limit = 400 A.

220/240 V network downstream from a 380/415 V network

For 1P + N or 2P circuit breakers connected between the phase and neutral on a $380/415 \, \text{V}$ network, with a TT or TNS neutral system, consult the $220/240 \, \text{V}$ cascading table to determinate cascading possibilities between upstream and downstream circuit breakers, for C60 upstream and consult the $380/415 \, \text{V}$ cascading table for iDPN.

For 1P + N or 2P circuit breakers connected to one phase of a 380/415 V network used together with the neutral to supply a single-phase circuit, consult the cascading tables for 380/415 V networks to determine the cascading possibilities between upstream and downstream circuit breakers.

Example of three level cascading

Consider three circuit breakers A, B and C connected in series. The criteria for cascading are fulfilled in the following two cases:

- the upstream device A is coordinated for cascading with both devices B and C (even if the cascading criteria are not fulfilled between B and C). It is simply necessary to check that the combinations A + B and A + C have the required breaking capacity
- each pair of successive devices is coordinated, i.e. A with B and B with C (even if the cascading criteria are not fulfilled between A and C). It is simply necessary to check that the combinations A + B and B + C have the required breaking capacity. The upstream breaker A is a NSX250L (breaking capacity 150 kA) for a prospective lsc of 80 kA across its output terminals.

A NSX100B (breaking capacity 25 kA) can be used for circuit breaker B for a prospective lsc of 40 kA across its output terminals, since the «reinforced» breaking capacity provided by cascading with the upstream NSX250L is 50 kA.

A C60H (breaking capacity 15 kA) can be used for circuit breaker C for a prospective lsc of 24 kA across its output terminals since the «reinforced» breaking capacity provided by cascading with the upstream NSX250L is 25 kA.

Note that the «reinforced» breaking capacity of the C60H with the NSX100B upstream is only 20 kA, but:

- A + B = 50 kA
- A + C = 25 kA.

Cascading 220/240 V

Upstream: NSC100N Compact NSX100-160 Downstream: xC60, C120

		_	_	_	_	_				
Upstream	NG160E	NG160N	NG160H	NSC100N	NSX100B	NSX100F	NSX100N	NSX100H	NSX100S	NSX100L
Breaking capacity (kA rms)	25	40	50	42	40	85	90	100	120	150
			•	•	•			•		
Downstream	Reinforced	breaking ca	pacity (kA rr	ns)						
xC60		40	50	42	40	50	80	80	80	80
C120N		40	40	42	40	40	50	50	70	70
C120H		40	40	42	40	40	50	50	70	70

Upstream	NSX160B	NSX160F	NSX160N	NSX160H	NSX160S	NSX160L
Breaking capacity (kA rms)	40	85	90	100	120	150
Downstream	Reinforced breaking	g capacity (kA rms)				
xC60	40	50	80	80	80	80
C120N	40	40	50	50	70	70
C120H	40	40	50	50	70	70
NG160E	40	50	50	50	60	60

Cascading 220/240 V

Upstream: Compact NSX250 Downstream: xC60, C120

Upstream	NSX250B	NSX250F	NSX250N	NSX250H	NSX250S	NSX250L
Breaking capacity (kA rms)	40	85	90	100	120	150
			•	•		
Downstream	Reinforced breaking	g capacity (kA rms)				
xC60	40	50	65	65	65	65
C120N	40	40	50	50	70	70
C120H	40	40	50	50	70	70

Cascading, network 380/415 V

Upstream: xC60, C120, NG125 Downstream: xC60, C120

Upstream	C60H			C120N	C120H	NG125N	NG125H	NG125L
·		32/40 A	50/63					
	15	32/40 A 20	15	10	15	25	36	50
							•	•
Downstream	Breaking c	apacity (kA rms)						
xC60						25	36	36
C120N					15	25	25	36
C120H					15	25	25	35

Complementary technical information

Cascading, network 380/415 V

Upstream: NSC100N Compact NSX100-160 Downstream: xC60, C120

NSC100N, Compact NSX100-160

Upstream	NG160E	NG160N	NG160H	NSC100N	NSX100B	NSX100F	NSX100N	NSX100H	NSX100S	NSX100L
Breaking capacity (kA rms)	16	25	36	18	25	36	50	70	100	150
Downstream	Reinforced	breaking ca	pacity (kA rr	ns)						
xC60	15	25	25	18	25	36	40	40	40	40
C120N		25	25	18	25	25	25	25	25	25
C120H		25	25	18	25	25	25	25	25	25

Upstream	NSX160B	NSX160F	NSX160N	NSX160H	NSX160S	NSX160L
Breaking capacity (kA rms)	25	36	50	70	100	150
	•					
Downstream						
xC60 ≤ 40 A	25	36	40	40	40	40
xC60 50 A and 63 A	25	30	30	30	30	30
C120N	25	25	25	25	25	25
C120H	25	25	25	25	25	25

Cascading, network 380/415 V

Upstream: Compact NSX250-630 Downstream: xC60, C120

Upstream	NSX250B	NSX250F	NSX250N	NSX250H	NSX250S	NSX250L
Breaking capacity (kA rms)	25	36	50	70	100	150
				'		
Downstream	Reinforced breakin	g capacity (kA rms)				
xC60 ≤ 40 A	25	30	30	30	30	30
xC60 50 A and 63 A	25	25	25	25	25	25
C120N	25	25	25	25	25	25
C120H	25	25	25	25	25	25

Energy Efficiency from Power to Final Distribution

- > Up to 50% lesser power consumption compared to IEC Standards specification
- > Seamless connectivity to EMS and BMS by using Universal Modbus protocol
- > DB-mountable ComReady Meters metering energy usage from large sectors to individual loads

100% Recyclable and Recoverable REACH and RoHS compliant

Target Segments and Applications

Applications:

- Data Centers
- Industrial premises
- Hospitals and Utilities
- Shopping Malls
- Commercial Establishments
- Residential townships

Benefits:

- Reduction in electricity expenses up to 15%
- Solution scalability
- Ensuring occupant comfort while reducing operating costs
- · Can precisely locate the fault area
- Reliability of data and Indications

Monitoring and Control of each zone on centralized HMI via Modbus through Acti 9 Smartlink

Benefits

For users

- > Reduction in electricity expenses by up to 15% through management of lighting or other devices, by optimization related to human presence. The user can perfectly control energy consumption for each zone.
- Solution scalability in the event of reallocation or addition of zones. The Acti 9 system allows fast, reliable changes to the wiring in the switchboard.
- Ensuring occupant comfort while reducing operating costs, through last detection and pinpointing in the event of a malfunction on an electrical switchboard

Status and control of individual load on centralized HMI via Enternet through Acti 9 Smartlink and GSM Modem

Benefits

For the end user

Performance

The user is warned as soon as a protective device trips and he knows precisely where the fault is located.

- Reliability of data and indications

 > Low-level signalling contacts complying with IEC 60947-5-4.

 > High level of electromagnetic compatibility of the Acti 9 Smartlink modules.

Status and control of individual load on centralized PC via Enternet through Acti 9 Smartlink

Benefits

For users

- Reduction in electricity expenses by up to 30% through supervision allowing targeted actions
- > Optimization of investment with a system designed and optimized for electricity distribution, handling all the functions useful for operation.

Make the most of your energy

Ahmedabad

Schneider Electric India (P) Ltd. 41 B, 42 A, 4th Floor, Space House Opp. Sri Krishna Centre, Mithakall Six Roads, Ahmedabad - 380009 Tel: 079-26440368/26426944 Fax: 079-26426948

Bangalore

Schneider Electric India (P) Ltd. 4th Floor, Electra, Wing 'A' Exora Business Parks, Marathahalli, Sarjapur Outer Ring Road, Bangalore - 560 103. Tel: 080-4333 3333, Fax: 080-4333 2323

Chandigarh

Schneider Electric India (P) Ltd. SCO. 13-14-15, 4th Floor, Sector-34-A Chandigarh - 160022 Tel: 0172-5076781/82/83/84 Fax: 0172-2669043

Chennai

Schneider Electric India (P) Ltd. III Floor, DBS Westminister, No 108/5 Dr. Radhakrishan Salal, Mylapore Chennai - 600004 Tel: 44-39143200

Cochin

Schneider Electric India (P) Ltd. 41/408, D1, BeeJay Towers, Above Qatar Airways, Rajaji Road Cochin - 682035 Tel: 0484-3048401/2/3 Fax: 0484-3048405

Coimbatore

Schneider Electric India (P) Ltd. No. 104, 3rd Floor, Classic Tower, Trichy Road, Coimbatore - 641013 Tel: 0422-4392729/4392927 Fax: 0422-4392972

Jaipur

Schneider Electric India (P) Ltd. Jaipur Business Centre 309, 3rd Floor Sangam Tower 190, Church Road, Jaipur - 302001 Tel: 0141-5118249/5102561 Fax: 0141-5113303

Jamshedpur

Schneider Electric India (P) Ltd. The Business Centre Moti Bhavan Road No. 1 Contractor's Area, Bistupur Jamshedpur - 8311001 Tel: 0657-2224426/2226560 Fax: 0657-2222757

Kolkata

Schneider Electric India (P) Ltd. Technopolis, 3rd Floor, BP-4, Wing-B, Sector-V, Salt Lake City, Kolkata - 700091 Tel: 033-33640100-101 Fax: 033-33640102

Lucknow

Schneider Electric India (P) Ltd. 1st Floor, Asha Bhawan 27/II-A Gokhle Marg, Lucknow - 226001 Tel: 0522-4006010 Fax: 0522-4006011

Ludhiana

Schneider Electric India (P) Ltd.
Office No. 3, 5th Floor, Novelty Plaza
Bhai Walla Chowk, Ludhiana - 140001
Tel: 0161-4656672-75
Fax: 0161-4656671

Mumbai

Schneider Electric India (P) Ltd. Unit No. 1141, 1142 Building No. 11, 4th Floor, Solitaire Corporate Park Andheri Kurla Road, Chakala Andheri (E), Mumbai - 400059 Tel: 022-39404000/40170000 Fax: 022-40170092

Mumbai

Schneider Electric India (P) Ltd., 2nd Floor, Marwah House, Kishanlal Marwah Marg, Off Saki Vihar Road, Marol, Andheri(E), Mumbai - 400072, Maharashtra. Tel: 022-30263300. Fax: 022-30263333

Nagpur

Schneider Electric India (P) Ltd. Fortune Business Centre 6, Bashant Vihar, WS.C. Road, Shankar Nagar, Nagpur - 440010 Tel: 0712-2558581 Fax: 0712-2550070

Pune

Schneider Electric India (P) Ltd. 2nd Floor, R.B. Business Centre Above Dasa Electronics Sangvi Nagar, Aundh, Pune - 411007 Tel: 020-39404000/66421900 Fax: 020-66421999

Secunderabad

Schneider ElecIric India (P) Ltd. D. No. 1-8-271, # 102, Ashoka Bhoopal Chambers, SF. Road, Secunderabad - 500003 Tel: 040-39404000/66330000 Fax: 040-66330000

Vadodara

Schneider Electric India (P) Ltd. 305, "Concorde" RC Dutt Road, Alkapuri, Vadodara - 390007 Tel: 0265-2359117/118 Fax: 0265-2353406

Vishakhapatnam

Schneider Electric India (P) Ltd. Ratnam's Executive Centre D. No. 10-1-43, 1st Floor Siripuram Fort, CBM Compound Vishakapatnam - 530016 Tel: 0891 -2508990 Fax: 0891-2508990

For more information visit our website at: www.schneider-electric.co.in Schneider Electric India Pvt. Ltd. (A 100% subsidiary of Schneider Electric Industries SAS)

Corporate office: 9th Floor, DLF Building No.10, Tower C, DLF Cyber City, Phase II, Gurgaon - 122002, Haryana, Tel: 0124 3940400, Fax: 0124 4222036

Customer Care Centre: Toll-free numbers: 1800 180 1707, 1800 103 0011, General number: 0124 4222040, Email: customercare.in@schneider-electric.com