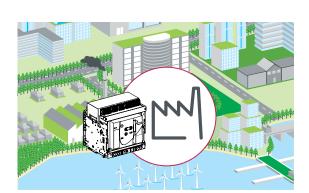


brings more functionalities, options and features which make it more


Standard Protection System for your electrical distribution network

Schneider Electric Global specialist in the field of ACBs and MCCBs, introduces EasyPact SPS range of ACBs

- > Single Frame size from 800-1600A
- ASIC Based Microprocessor trip unit with OL, SC & EF protection features, which offer fastest short circuit tripping time in its class
- 25 ms Short circuit tripping time ensure low let through energy increase the longevity of an electrical distribution network, cables & equipment
- > Offer highest standards of safety for operator as well as Electrical distribution network
- Pollution category –III along with modular technology ensure high operating cycles without maintenance
- > Simple to choose and easy to install

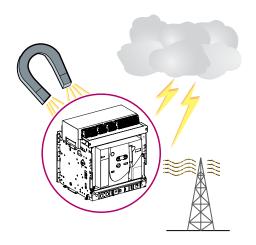
True Modular Design

Modular construction delivers high level of reliability in harshest environment . Thanks to Schneider innovation EasyPact SPS is built on a robust modular architecture delivering pollution category – III

As per IEC 60664-1, which is the highest standard of circuit breaker construction in industry.

	Pollution Degree - I	Pollution Degree - II	Pollution Degree - III
Defination	No pollution or only dry, non-conductive pollution occurs.	Normally, only non- conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation may be expected	Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation.
Application	Clean room environment, Considered inside sealed components and within air/water tight enclosures	Office environment, Test stations & laboratory areas are considered	Unheated & boiler roomsHarsher environment typical in many industrial manufacturing areas

Understanding the effects of pollution degree on your products will help you to ensure that you are creating a safe environment by using a better & reliable product.


Low let through energy

EasyPact SPS short circuit tripping time is only 25 ms, which is best in its class.

Let through energy (Energy passes through distribution network during SC) = I^2t I = Intensity of the short circuit current (example 35kA)

t = Short circuit tripping time of the circuit breaker (example 25 ms)

During the short circuit duration current is constant and it is the ACB short circuit tripping time, which decides the amount of let through energy passing through cables/bus bar. EasyPact SPS lowest let through energy increase the longevity of electrical distribution network cables & equipment.

Electromagnetic disturbances

EasyPact SPS devices are protected against:

- > Overvoltages caused by devices that generate electromagnetic disturbances
- > Overvoltages caused by atmospheric disturbances or by a distributionsystem outage (e.g. failure of a lighting system)
- > Devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- > Electrostatic discharges produced by users EasyPact SPS devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:
- > IEC 60947-2, appendix F The above tests guarantee that:
- > No nuisance tripping occurs
- > Tripping times are respected

Thermal memory

The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current (presence of an overload or not). The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables. The thermal memory assumes a cable cooling time of approximately 20 minutes.

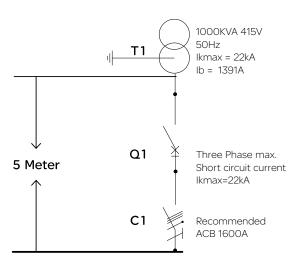
In EasyPact SPS all trip units are equipped with thermal memory records the temperature rise caused by each Overload, even very short one. This information stored in the thermal memory reduces the tripping time during repeated Overloads and enhance the cable life.

Unique Auto latching feature support Operator Safety

EasyPact SPS offer distinct indication about ACBs position In chasis. Product design also have unique arrangement of position latching when ACB Move from Connected -> Test -> Disconnected.

EasyPact SPS Communication System

EasyPact SPS communication hardware options facilitate following option on Modbus RS485 /Ethernet TCP IP Network:


- > Remote breaker Status ON/OFF/TRIP
- > Remote ACB Status connected /test/disconnected
- > Remote Control ON/OFF
- > Electrical interlocking facility.

Alternatively, digital I/O's of Power Meters can also be used for above parameters. These all parameters can be monitored and controlled at centralized Power SCADA , and gives a flexibility to the user to connect to Schneider Electric's cloud Based energy management platforms like "ENERGY ADVANCED"

A knowledge of 3-phase symmetrical shortcircuit current values (Isc) at strategic points of an installation is necessary in order to dimension switchgear (fault current rating); cables (thermal withstand rating); protective devices (discriminative trip settings) and so on...

In the following notes a 3-phase short-circuit of zero impedance (the so-called bolted short-circuit) fed through a typical HV/LV distribution transformer will be examined. Except in very unusual circumstances, this type of fault is the most severe, and is certainly the simplest to calculate.

Short-circuit current at the secondary terminals of a HV/LV distribution transformer

The case of one transformer

As a first approximation the impedance of the HV system is assumed to be negligibly small, so that:

Isc =
$$\frac{\ln x \cdot 100}{\text{Usc}}$$
 where $\ln = \frac{P \times 10^3}{U_{20}\sqrt{3}}$ and:

P = kVA rating of the transformer

U₂₀ = phase-to-phase secondary volts on open circuit

ln = nominal current in amps

Isc = short-circuit fault current in amps

Usc = short-circuit impedance voltage of the transformer in %.

Typical values of Usc for distribution transformers are given in .

Example

1000 kVA transformer

Usc = 6.5%

$$\ln = \frac{1000 \times 10^3}{415 \times \sqrt{3}} = 1391 \text{A Isc} = \frac{1391 \times 100}{6.5} = 22 \text{ kA}$$

In practice Isc is slightly less than that calculated by this method, since the HV system impedance is such that its fault level at the HV terminals of the transformer rarely exceeds 500 MVA. A level of 250 MVA, or less, is more common.

Isc at the receiving end of the feeder as a function of the Isc at its sending end

Copper 230 V / 400 \	V																					
c.s.a. of phase		th of circ	uit (in m	etres)																		
conductors (mm2) 1.5														1.3	1.8	2.6	3.6	5.2	7.3	10.3	14.6	21
2.5												1.1	1.5	2.1	3.0	4.3	6.1	8.6	12.1	17.2	24	34
4											1.2	1.7	2.4	3.4	4.9	6.9	9.7	13.7	19.4	27	39	55
6											1.8	2.6	3.6	5.2	7.3	10.3	14.6	21	29	41	58	82
10										2.2	3.0	4.3	6.1	8.6	12.2	17.2	24	34	49	69	97	137
16								1.7	2.4	3.4	4.9	6.9	9.7	13.8	19.4	27	39	55	78	110	155	220
25						1.3	1.9	2.7	3.8	5.4	7.6	10.8	15.2	21	30	43	61	86	121	172	243	343
47.5					1.8	1.9 2.6	2.7 3.6	3.8 5.1	5.3 7.2	7.5	10.6	15.1	21	30 41	43 58	60 82	85	120	170 231	240 326	340 461	480
70					2.7	3.8	5.3	7.5	10.7	15.1	21	30	43	60	85	120	115	240	340	320	401	
95				2.6	3.6	5.1	7.2	10.2	14.5	20	29	41	58	82	115	163	231	326	461			
120		1.6	2.3	3.2	4.6	6.5	9.1	12.9	18.3	26	37	52	73	103	146	206	291	412				
150	1.2	1.8	2.5	3.5	5.0	7.0	9.9	14.0	19.8	28	40	56	79	112	159	224	317	448				
185	1.5	2.1	2.9	4.2	5.9	8.3	11.7	16.6	23	33	47	66	94	133	187	265	374	529				
240	1.8	2.6	3.7	5.2	7.3	10.3	14.6	21	29	41	58	83	117	165	233	330	466	659				
300	2.2	3.1	4.4	6.2	8.8	12.4	17.6	25	35	50	70	99	140	198	280	396	561					
2x120	2.3	3.2	4.6	6.5	9.1	12.9	18.3	26	37	52	73	103	146	206	292	412	583					
2x150	2.5	3.5	5.0	7.0	9.9	14.0	20	28	40	56	79	112	159	224	317	448	634					
2x185 553x120	2.9 3.4	4.2	5.9 6.9	9.7	11.7	16.6	23	33	47 55	66 77	94	133	187 219	265 309	375 438	530 619	749					
3x150	3.7	5.3	7.5	10.5	14.9	21	30	42	60	84	119	168	238	336	476	672						
3x185	4.4	6.2	8.8	12.5	17.6	25	35	50	70	100	141	199	281	398	562							
		ownstrea																				
Isc upstream (in kA)	(in kA																					
100	93	90	87	82	77	70	62	54	45	37	29	22	17.0	12.6	9.3	6.7	4.9	3.5	2.5	1.8	1.3	0.9
90	84	82	79	75	71	65	58	51	43	35	28	22	16.7	12.5	9.2	6.7	4.8	3.5	2.5	1.8	1.3	0.9
80	75	74	71	68	64	59	54	47	40	34	27	21	16.3	12.2	9.1	6.6	4.8	3.5	2.5	1.8	1.3	0.9
70 60	66 57	65 56	63 55	61 53	58	54 48	49	39	38	32 29	26	20	15.8	12.0	8.9	6.6	4.8	3.4	2.5	1.8	1.3	0.9
50	48	47	46	45	43	41	38	35	31	27	22	18.3	14.5	11.2	8.5	6.3	4.6	3.4	2.4	1.7	1.2	0.9
40	39	38	38	37	36	34	32	30	27	24	20	16.8	13.5	10.6	8.1	6.1	4.5	3.3	2.4	1.7	1.2	0.9
35	34	34	33	33	32	30	29	27	24	22	18.8	15.8	12.9	10.2	7.9	6.0	4.5	3.3	2.4	1.7	1.2	0.9
30	29	29	29	28	27	27	25	24	22	20	17.3	14.7	12.2	9.8	7.6	5.8	4.4	3.2	2.4	1.7	1.2	0.9
25	25	24	24	24	23	23	22	21	19.1	17.4	15.5	13.4	11.2	9.2	7.3	5.6	4.2	3.2	2.3	1.7	1.2	0.9
20	20	20	19.4	19.2	18.8	18.4	17.8	17.0	16.1	14.9	13.4	11.8	10.1	8.4	6.8	5.3	4.1	3.1	2.3	1.7	1.2	0.9
15	14.8	14.8	14.7	14.5	14.3	14.1	13.7	13.3	12.7	11.9	11.0	9.9	8.7	7.4	6.1	4.9	3.8	2.9	2.2	1.6	1.2	0.9
10	9.9	9.9	9.8	9.8	9.7	9.6	9.4	9.2	8.9	8.5	8.0	7.4	6.7	5.9	5.1	4.2	3.4	2.7	2.0	1.5	1.1	0.8
5	7.0 5.0	6.9 5.0	5.0	6.9 4.9	6.9 4.9	6.8 4.9	6.7 4.9	6.6 4.8	6.4 4.7	6.2 4.6	6.0 4.5	5.6 4.3	5.2 4.0	4.7 3.7	3.4	3.6	2.5	2.4	1.9	1.4	1.1	0.8
4	4.0	4.0	4.0	4.0	4.0	3.9	3.9	3.9	3.8	3.7	3.6	3.5	3.3	3.1	2.9	2.6	2.2	1.9	1.6	1.2	1.0	0.7
3	3.0	3.0	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.9	2.8	2.7	2.6	2.5	2.3	2.1	1.9	1.6	1.4	1.1	0.9	0.7
2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.9	1.8	1.8	1.7	1.6	1.4	1.3	1.1	1.0	0.8	0.6
1	1.0			1.0																	0.0	0.5
Aluminium 230 V / 4		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.6	
Aluminium 230 V / 4	00 V	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.6	
c.s.a. of phase		1.0 th of circ			1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.6	
c.s.a. of phase conductors (mm2)					1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0									22
c.s.a. of phase conductors (mm2) 2.5					1.0	1.0	1.0	1.0	1.0	1.0	1.0			1.4	1.9	2.7	3.8	5.4	7.6	10.8	15.3	22
c.s.a. of phase conductors (mm2) 2.5					1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5									22 35 52
c.s.a. of phase conductors (mm2) 2.5 4					1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.5	1.4	1.9	2.7	3.8	5.4 8.6	7.6 12.2	10.8	15.3 24	35
c.s.a. of phase conductors (mm2) 2.5 4 6					1.0	1.0	1.0	1.0	1.0	2.2		1.1	1.5	1.4 2.2 3.2	1.9 3.1 4.6	2.7 4.3 6.5	3.8 6.1 9.2	5.4 8.6 13.0	7.6 12.2 18.3	10.8 17.3 26	15.3 24 37	35 52
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25					1.0	1.0	1.0	1.7	2.4		1.9	1.1 1.6 2.7	1.5 2.3 3.8	1.4 2.2 3.2 5.4	1.9 3.1 4.6 7.7	2.7 4.3 6.5 10.8	3.8 6.1 9.2 15.3	5.4 8.6 13.0 22	7.6 12.2 18.3 31	10.8 17.3 26 43	15.3 24 37 61	35 52 86
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35					1.0		1.7	1.7 2.4	2.4	2.2 3.4 4.7	1.9 3.1 4.8 6.7	1.1 1.6 2.7 4.3 6.8 9.5	1.5 2.3 3.8 6.1 9.6 13.4	1.4 2.2 3.2 5.4 8.7 13.5 18.9	1.9 3.1 4.6 7.7 12.2 19.1 27	2.7 4.3 6.5 10.8 17.3 27 38	3.8 6.1 9.2 15.3 24 38 54	5.4 8.6 13.0 22 35 54 76	7.6 12.2 18.3 31 49 76 107	10.8 17.3 26 43 69 108 151	15.3 24 37 61 98 153 214	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 25 4 6 10 16 25 35 47.5					1.0	1.6	1.7 2.3	1.7 2.4 3.2	2.4 3.4 4.6	2.2 3.4 4.7 6.4	1.9 3.1 4.8 6.7 9.1	1.1 1.6 2.7 4.3 6.8 9.5 12.9	1.5 2.3 3.8 6.1 9.6 13.4 18.2	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26	1.9 3.1 4.6 7.7 12.2 19.1 27 36	2.7 4.3 6.5 10.8 17.3 27 38 51	3.8 6.1 9.2 15.3 24 38 54 73	5.4 8.6 13.0 22 35 54 76 103	7.6 12.2 18.3 31 49 76 107	10.8 17.3 26 43 69 108 151 205	15.3 24 37 61 98 153 214 290	35 52 86 138 216
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5						1.6	1.7 2.3 3.4	1.7 2.4 3.2 4.7	2.4 3.4 4.6 6.7	2.2 3.4 4.7 6.4 9.5	1.9 3.1 4.8 6.7 9.1	1.1 1.6 2.7 4.3 6.8 9.5 12.9	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54	2.7 4.3 6.5 10.8 17.3 27 38 51 76	3.8 6.1 9.2 15.3 24 38 54 73 107	5.4 8.6 13.0 22 35 54 76 103	7.6 12.2 18.3 31 49 76 107 145	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 225 35 47.5 70					2.3	1.6 2.4 3.2	1.7 2.3 3.4 4.6	1.7 2.4 3.2 4.7 6.4	2.4 3.4 4.6 6.7 9.1	2.2 3.4 4.7 6.4 9.5 12.9	1.9 3.1 4.8 6.7 9.1 13.4 18.2	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54	2.7 4.3 6.5 10.8 17.3 27 38 51 76	3.8 6.1 9.2 15.3 24 38 54 73 107	5.4 8.6 13.0 22 35 54 76 103 151 205	7.6 12.2 18.3 31 49 76 107 145 214	10.8 17.3 26 43 69 108 151 205	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95					2.3 2.9	1.6 2.4 3.2 4.1	1.7 2.3 3.4 4.6 5.8	1.7 2.4 3.2 4.7 6.4 8.1	2.4 3.4 4.6 6.7 9.1 11.5	2.2 3.4 4.7 6.4 9.5 12.9 16.3	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73	2.7 4.3 6.5 10.8 17.3 27 38 51 76 103	3.8 6.1 9.2 15.3 24 38 54 73 107 145	5.4 8.6 13.0 22 35 54 76 103 151 205 259	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120					2.3	1.6 2.4 3.2	1.7 2.3 3.4 4.6	1.7 2.4 3.2 4.7 6.4	2.4 3.4 4.6 6.7 9.1	2.2 3.4 4.7 6.4 9.5 12.9	1.9 3.1 4.8 6.7 9.1 13.4 18.2	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54	2.7 4.3 6.5 10.8 17.3 27 38 51 76	3.8 6.1 9.2 15.3 24 38 54 73 107	5.4 8.6 13.0 22 35 54 76 103 151 205	7.6 12.2 18.3 31 49 76 107 145 214	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120 150				netres)	2.3 2.9 3.1	1.6 2.4 3.2 4.1 4.4	1.7 2.3 3.4 4.6 5.8 6.3	1.7 2.4 3.2 4.7 6.4 8.1 8.8	2.4 3.4 4.6 6.7 9.1 11.5 12.5	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100	2.7 4.3 6.5 10.8 17.3 27 38 51 76 103 130	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199	5.4 8.6 13.0 22 35 54 76 103 151 205 269 282	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120 150 185	Lengt	th of circ	uit (in m	2.6	2.3 2.9 3.1 3.7	1.6 2.4 3.2 4.1 4.4 5.2	1.7 2.3 3.4 4.6 5.8 6.3 7.4	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 26 30	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35 42	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50 59	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118	2.7 4.3 6.5 10.8 17.3 27 38 51 76 103 130 141	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199 236	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120 150 185	Lengt	th of circ	uit (in m	2.6 3.3	2.3 2.9 3.1 3.7 4.6	1.6 2.4 3.2 4.1 4.4 5.2 6.5	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 18.4	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 26	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 26 30 37	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35 42 52	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50 59 73	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118 147	2.7 4.3 6.5 10.8 17.3 27 38 51 76 103 130 141 167 208	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199 236 294	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120 150 185 240 300 2x120 2x150	1.2 1.4 1.4 1.6	1.6 2.0 2.2	2.3 2.8 2.9 3.1	2.6 3.3 3.9 4.1 4.4	2.3 2.9 3.1 3.7 4.6 5.5 5.8 6.3	1.6 2.4 3.2 4.1 4.4 5.2 6.5 7.8 8.1 8.8	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2 11.1 11.5 12.5	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0 15.6 16.3 17.7	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 18.4 22 23 26	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 26 31 33 35	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25 30 37 44 46 50	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35 42 52 62 65 71	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50 59 73 88 92 100	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104 125 130	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118 147 177 184	2.7 4.3 6.5 10.8 17.3 27 38 51 103 130 141 167 208 250 260 282	3.8 6.1 9.2 15.3 24 38 54 73 107 145 199 236 294 353 367 399	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415 499	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 16 25 35 47.5 70 95 120 150 185 240 300 2x120 2x150 2x185	1.2 1.4 1.6 1.9	1.6 2.0 2.0 2.2 2.6	2.3 2.8 2.9 3.1 3.7	2.6 3.3 3.9 4.1 4.4 5.2	2.3 2.9 3.1 3.7 4.6 5.5 5.8 6.3 7.4	1.6 2.4 3.2 4.1 4.4 5.2 6.5 7.8 8.1 8.8 10.5	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2 11.1 11.5 12.5 14.8	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0 15.6 16.3 17.7 21	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 22 23 25 30	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 33 35 42	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25 30 37 44 46 50 59	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35 42 62 65 71	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50 59 92 100 118	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104 125 130 141 167	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118 147 177 184 200 236	2.7 4.3 6.5 10.8 17.3 27 38 51 76 103 130 141 167 208 250 260 282 334	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199 236 294 353 367 399 472	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415 499	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 10 16 225 35 47.5 70 95 120 150 185 240 300 2×120 2×150 2×185 2×240	1.2 1.4 1.4 1.6 1.9 2.3	1.6 2.0 2.0 2.2 2.6 3.3	2.3 2.8 2.9 3.1 3.7 4.6	2.6 3.3 3.9 4.1 4.4 5.2 6.5	2.3 2.9 3.1 3.7 4.6 5.5 5.8 6.3 7.4 9.2	1.6 2.4 3.2 4.1 4.4 5.2 6.5 7.8 8.1 8.8 10.5	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2 11.1 11.5 12.5 14.8 18.4	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0 15.6 16.3 17.7 21	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 22 23 25 30 37	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 33 35 42	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25 30 37 44 46 50 59 74	1.1 1.6 2.7 4.3 4.3 9.5 12.9 19.0 26 32 35 42 42 62 65 71 83	1.5 2.3 3.8 6.1 9.6 113.4 18.2 27 36 46 50 59 92 100 118	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104 125 130 141 167 208	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118 147 177 184 200 236 294	2.7 4.3 6.5 10.8 17.3 38 51 76 103 130 141 167 208 250 260 282 334 415	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199 236 294 367 399 472 587	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415 499	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 10 10 16 25 35 47.5 70 95 120 150 185 240 300 2x120 2x150 2x185 2x240 3x120	1.2 1.4 1.6 1.9 2.3 2.2	1.6 2.0 2.2 2.6 3.3 3.1	2.3 2.8 2.9 3.1 3.7 4.6 4.3	2.6 3.3 3.9 4.1 4.4 5.2 6.5 6.1	2.3 2.9 3.1 3.7 4.6 5.5 5.8 6.3 7.4 9.2 8.6	1.6 2.4 3.2 4.1 4.4 5.2 6.5 7.8 8.1 8.8 10.5 13.0	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2 11.1 11.5 12.5 14.8 18.4 17.3	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0 15.6 16.3 17.7 21 26 24	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 18.4 22 23 25 30 37 34	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 26 31 33 35 42 52 49	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25 30 37 44 46 50 59 74	1.1 1.6 2.7 4.3 6.8 9.5 12.9 19.0 26 32 35 42 52 62 66 71 83 104 97	1.5 2.3 3.8 6.1 9.6 13.4 18.2 27 36 46 50 59 73 88 88 92 100 118 147 138	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104 125 130 141 167 208 195	1.9 3.1 4.6 7.7 12.2 27 36 54 73 92 100 118 147 177 178 184 200 236 294 275	2.7 4.3 6.5 10.8 17.3 38 51 76 103 130 141 167 208 250 260 282 334 415 389	3.8 6.1 9.2 15.3 24 73 107 145 184 199 236 367 399 472 587 551	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415 499	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302
c.s.a. of phase conductors (mm2) 2.5 4 6 6 10 16 25 35 47.5 70 95 120 150 185 240 300 2x120 2x150 2x185 2x240	1.2 1.4 1.4 1.6 1.9 2.3	1.6 2.0 2.0 2.2 2.6 3.3	2.3 2.8 2.9 3.1 3.7 4.6	2.6 3.3 3.9 4.1 4.4 5.2 6.5	2.3 2.9 3.1 3.7 4.6 5.5 5.8 6.3 7.4 9.2	1.6 2.4 3.2 4.1 4.4 5.2 6.5 7.8 8.1 8.8 10.5	1.7 2.3 3.4 4.6 5.8 6.3 7.4 9.2 11.1 11.5 12.5 14.8 18.4	1.7 2.4 3.2 4.7 6.4 8.1 8.8 10.4 13.0 15.6 16.3 17.7 21	2.4 3.4 4.6 6.7 9.1 11.5 12.5 14.8 22 23 25 30 37	2.2 3.4 4.7 6.4 9.5 12.9 16.3 17.7 21 33 35 42	1.9 3.1 4.8 6.7 9.1 13.4 18.2 23 25 30 37 44 46 50 59 74	1.1 1.6 2.7 4.3 4.3 9.5 12.9 19.0 26 32 35 42 42 62 65 71 83	1.5 2.3 3.8 6.1 9.6 113.4 18.2 27 36 46 50 59 92 100 118	1.4 2.2 3.2 5.4 8.7 13.5 18.9 26 38 51 65 71 83 104 125 130 141 167 208	1.9 3.1 4.6 7.7 12.2 19.1 27 36 54 73 92 100 118 147 177 184 200 236 294	2.7 4.3 6.5 10.8 17.3 38 51 76 103 130 141 167 208 250 260 282 334 415	3.8 6.1 9.2 15.3 24 38 54 73 107 145 184 199 236 294 367 399 472 587	5.4 8.6 13.0 22 35 54 76 103 151 205 259 282 333 415 499	7.6 12.2 18.3 31 49 76 107 145 214 290 367	10.8 17.3 26 43 69 108 151 205 303	15.3 24 37 61 98 153 214 290	35 52 86 138 216 302

Note: for a 3-phase system having 230 V between phases, divide the above lengths by $\sqrt{3}$

Circuit breaker.

Switch disconnector.

Common charac	teristics					
Number of poles					3/4	
Rated insulation voltage	∋ (V)		Ui		1000	
Impulse withstand volta	ıge (kV)		Uimp		12	
Rated operational volta	ge (V AC 50/60 Hz)	Ue		440	
Suitability for isolation			IEC 60	947-2	Yes	
Degree of pollution			IEC 60	664-1	3	
Basic circuit-brea	aker					
Circuit-breaker as pe	er IEC 60947-2					
Rated current (A)			In		at 40°C(1)	
Rating of 4th pole (A)						
Sensor ratings (A)				,		
Type of circuit breaker						
Ultimate breaking capa	city (kA rms)		lcu		220440V	
V AC 50/60 Hz						
Rated service breaking	capacity (kA rms)		lcs		% Icu	
Utilisation category						
Rated short-time withsta	and current (kA rm	s)	lcw	1s		
V AC 50/60 Hz						
Rated making capacity	(kA peak)		Icm		220440 V	
V AC 50/60 Hz						
Breaking time (ms) betw	ween tripping orde	r and arc extind	ction			
Closing time (ms)						
Switch-disconne	ctor as per IE	C60947-3	and A	nnex A		
Type of switch-disconne						
Operational current AC2 Rated making capacity			Icm			
Rated short-time withsta		2)	Icw	1s		
Maintenance/Co	,	·	1000	10		
Service life	Mechanical	without main	tenance			
C/O cyclesx1000	Electrical	without main	tenance		440 V	

Horizontal Vertical

Drawout

Drawout

Fixed

3P

4P

3P 4P

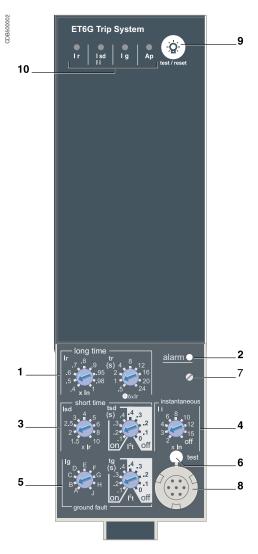
3P/4P

3P/4P

(1) Refer catalogue for details on temperature derating.

Connection

 $(H \times W \times D)$


Weight (kg)

(approximate)

Dimensions (mm)

SPS08	SPS10	SPS12	SPS16
800	1000	1250	1600
800	1000	1250	1600
800	1000	1250	1600
F	F	F	F
50	50	50	50
 100%	100%	100%	100%
В	В	В	В
42	42	42	42
105	105	105	105
25	25	25	25
<50	<50	<50	<50
SPS08	SPS10	SPS12	SPS16
FA	FA	FA	FA
800	1000	1250	1600
75	75	75	75
36	36	36	36
l	l	l	l
12.5	12.5	12.5	12.5
6	6	6	6
No			
Yes			
322 x 228 x 277			
322 x 358 x 277			
301 x 276 x 196			
301 x 346 x 196			
30/39			
14/18			

ET trip unit protect power circuits, under overload & short-circuit conditions. ET6G provides earth-fault protection and equipped with individual fault trip indication LEDs.

- Long-time threshold and tripping delay.
- Overload alarm (LED) at 1,125 lr.
- Short-time pick-up and tripping delay.
- Instantaneous pick-up.
- Earth-fault pick-up and tripping delay.
- Earth-fault test button.
- Long-time rating plug screw.
- Test connector.
- Lamp test, reset and battery test.
- Indication of tripping cause.
- (1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not). The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables. The thermal memory assumes a cable cooling time of approximately 20 minutes.
 (2) Applicable on ET6G trip system

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.

Protects cables (phase and neutral) against overloads

Thermal memory⁽¹⁾: thermal image before and after tripping.

Short-time protection

- The short-time protection function protects the distribution system against impedant short-circuits
- The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker (on ET6G)
- > The I²t ON and I2t OFF options enhance discrimination with a downstream protection devices(on ET6G)
- > Use of I²t curves with short-time protection:
 - > I²t OFF selected: the protection function implements a constant time curve
 - > I²t ON selected: the protection function implements an I2t inverse-time curve up to 10 lr. Above 10 lr, the time curve is constant

Earth-fault protection on ET6G trip system

Residual earth fault protection.

Selection of I2t type (ON or OFF) for delay.

A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault.

Туре	Description
Residual	 The function determines the zero-phase sequence current, i.e. the vectorial sum of the phase and neutral currents It detects faults downstream of the circuit breaker

Instantaneous protection

The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a threeposition switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications(2)

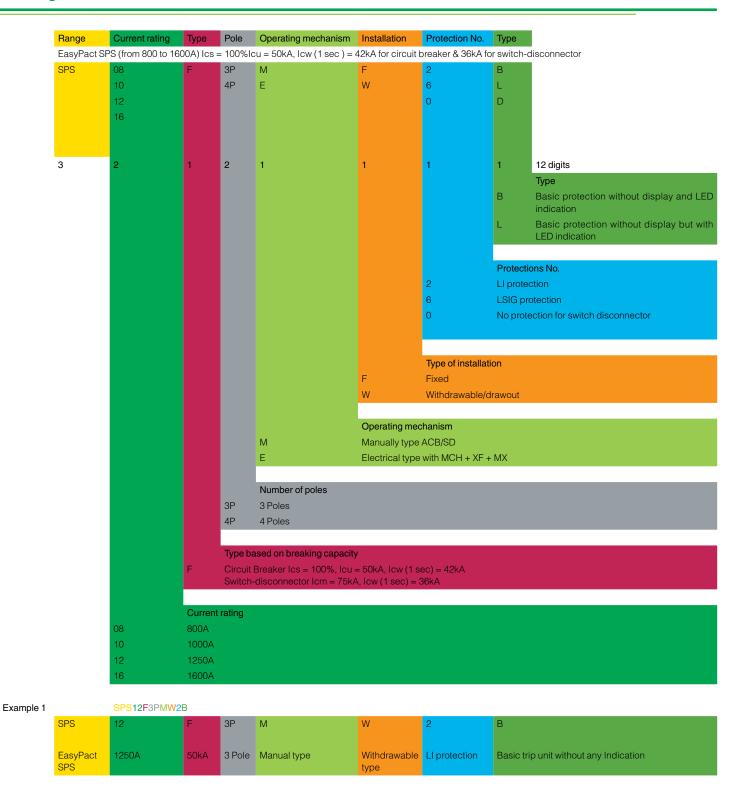
LEDs indicate the type of fault:

- > Overload (long-time protection Ir)
- > Short-circuit (short-time lsd or instantaneous li protection)
- > Earth fault (Ig)
- > Internal fault (Ap)

Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

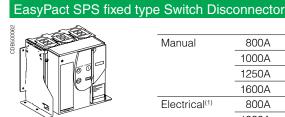
A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ET6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.


Note: ET trip control units come with a transparent leadseal cover as standard.

Protection			ET2	2.0								***
Long time			ET2.	.0								
Current setting (A)	Ir = In x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	₹tå Ir
Tripping between 1.05 and	d 1.20 x lr											
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24	- tr
Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600	· ***
	Accuracy: 0 to -20 %	6 x Ir	$0.7^{(1)}$		2	4	8	12	16	20	24	Isd
	Accuracy: 0 to - 20 %	7.2 x Ir	0.7(2)	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	- 0
Thermal memory			20 mi	inutes l	oefore	and aft	er tripp	ing				-
(1) 0 to -40% - (2) 0 to -60°	%											
Instantaneous												
Pick-up (A)	$lsd = lr \times$		1.5	2	2.5	3	4	5	6	8	10	
Accuracy: ±10 %												_
Time delay					ble tim		IS					
			Max I	break t	ime: 80) ms						_
Darlandia			ГТА	0 -								
Protection			ET6	G								※
Long time			ET60	G								½ t ∮ ⇔ Ir
Current setting (A)	Ir = In x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	lrl²t on
Tripping between 1.05 and	d 1.20 x lr											tr
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24	- Lı²t off
Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600	- Isd
	Accuracy: 0 to -20 %	6 x Ir	0.7 ⁽¹⁾	1	2	4	8	12	16	20	24	tsd
	Accuracy: 0 to -20 %	7.2 x Ir	0.7 ⁽²⁾	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	
Thermal memory			20 mi	inutes l	oefore	and aft	er tripp	ing				- -
(1) 0 to -40% - (2) 0 to -60°	%											_
Short time												
Pick-up (A)	$lsd = lr \times$		1.5	2	2.5	3	4	5	6	8	10	
Accuracy: ±10 %												_
Time setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					
		I ² t On	-	0.1	0.2	0.3	0.4					_
* ' '	tsd (max resettable tin	ne)	20	80	140	230	350					
(I ² t Off or I ² t On)	tsd (max break time)		80	140	200	320	500					
Instantaneous												
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off	
Accuracy: ±10 %											_	_
Time delay					ble tim		IS					
					ime: 50) ms						
Earth fault			ET60									the second secon
Pick-up (A)	Ig = In x		A	В	С	D	E	F	G	H	J	- Blg Liton
Accuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I^2 t $ off
	400 A < In ≤ 1000 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
	In ≥ 1250 A	12. 0."	500	640	720	800	880	960	1040	1120	1200	_ 0
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					O .
Time delay (cos)	An /man, man - 11 - 1- 1- 12	I ² t On	-	0.1	0.2	0.3	0.4					-
Time delay (ms)	tg (max resettable time	e)	20	80	140	230	350					
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500					

Note: All current-based protection functions require no auxiliary source. The test/reset button, clears the tripping indication and tests the battery.

I²t On)



EasyPact SPS 800 to 1600A

Fixed and withdrawable type

EasyPact SPS fixed type with ET trip unit Manual 80 100 125

		3P		4P	
		ET2.0	ET6G	ET2.0	ET6G
Manual	800A	SPS08F3PMF2B	SPS08F3PMF6L	SPS08F4PMF2B	SPS08F4PMF6L
	1000A	SPS10F3PMF2B	SPS10F3PMF6L	SPS10F4PMF2B	SPS10F4PMF6L
	1250A	SPS12F3PMF2B	SPS12F3PMF6L	SPS12F4PMF2B	SPS12F4PMF6L
	1600A	SPS16F3PMF2B	SPS16F3PMF6L	SPS16F4PMF2B	SPS16F4PMF6L
Electrical(1)	800A	SPS08F3PEF2B	SPS08F3PEF6L	SPS08F4PEF2B	SPS08F4PEF6L
	1000A	SPS10F3PEF2B	SPS10F3PEF6L	SPS10F4PEF2B	SPS10F4PEF6L
	1250A	SPS12F3PEF2B	SPS12F3PEF6L	SPS12F4PEF2B	SPS12F4PEF6L
	1600A	SPS16F3PEF2B	SPS16F3PEF6L	SPS16F4PEF2B	SPS16F4PEF6L

		3P	4P	
Manual	800A	SPS08F3PMF0D	SPS08F4PMF0D	
	1000A	SPS10F3PMF0D	SPS10F4PMF0D	
	1250A	SPS12F3PMF0D	SPS12F4PMF0D	
	1600A	SPS16F3PMF0D	SPS16F4PMF0D	
Electrical(1)	800A	SPS08F3PEF0D	SPS08F4PEF0D	
	1000A	SPS10F3PEF0D	SPS10F4PEF0D	
	1250A	SPS12F3PEF0D	SPS12F4PEF0D	
	1600A	SPS16F3PEF0D	SPS16F4PEF0D	

EasyPact SPS withdrawable type with ET trip unit Manual 800A 1000A 1250A 1600A Electrical(1) 800A

Ţ,		3P		4P	
		ET2.0	ET6G	ET2.0	ET6G
Manual	800A	SPS08F3PMW2B	SPS08F3PMW6L	SPS08F4PMW2B	SPS08F4PMW6L
	1000A	SPS10F3PMW2B	SPS10F3PMW6L	SPS10F4PMW2B	SPS10F4PMW6L
	1250A	SPS12F3PMW2B	SPS12F3PMW6L	SPS12F4PMW2B	SPS12F4PMW6L
	1600A	SPS16F3PMW2B	SPS16F3PMW6L	SPS16F4PMW2B	SPS16F4PMW6L
Electrical(1)	800A	SPS08F3PEW2B	SPS08F3PEW6L	SPS08F4PEW2B	SPS08F4PEW6L
	1000A	SPS10F3PEW2B	SPS10F3PEW6L	SPS10F4PEW2B	SPS10F4PEW6L
	1250A	SPS12F3PEW2B	SPS12F3PEW6L	SPS12F4PEW2B	SPS12F4PEW6L
	1600A	SPS16F3PEW2B	SPS16F3PEW6L	SPS16F4PEW2B	SPS16F4PEW6L

EasyPact SPS withdrawable type switch disconnector 3P Manual 800A SPS: 1000A SPS: 1250A SPS: 1600A SPS: 1600A SPS: 1000A SPS: 1000A SPS: 1000A SPS:

		3P	4P
Manual	800A	SPS08F3PMW0D	SPS08F4PMW0D
	1000A	SPS10F3PMW0D	SPS10F4PMW0D
	1250A	SPS12F3PMW0D	SPS12F4PMW0D
	1600A	SPS16F3PMW0D	SPS16F4PMW0D
Electrical(1)	800A	SPS08F3PEW0D	SPS08F4PEW0D
	1000A	SPS10F3PEW0D	SPS10F4PEW0D
	1250A	SPS12F3PEW0D	SPS12F4PEW0D
	1600A	SPS16F3PEW0D	SPS16F4PEW0D

⁽¹⁾ Supplied with spring charge motor (MCH), opening release (MX) and closing release (XF) with requested control voltage rating. Use customer order form on page 12 to specify coil voltages for electrical type breaker & to order optional accessories

Order ref no:

Date:			
Duad not not no			
Product ref no:		• • • • • • • • • • • • • • • • • • • •	
To indicate your choice	es, check the applicable s	square boxes	☑
, .	, , , , , , , , , , , , , , , , , , , ,	1	
And enter the appropri	ate information in the rec	tangles	
Circuit breaker or switch	h-disconnector	Quantity	
Rating (800-1600A)	Α		
Circuit breaker	F		
Switch Disconnector	FA		
Number of poles	3 or 4		
Type of equipment	Fixed		
	Draw out wi	th chassis	
Operating Mechanism	Manual Ope	erated	
	Electrical O	perated	
MCH - Gear motor		V	Ì
XF - Closing coil		V	
MX - Shunt/Opening vo	oltage release	V	
ET Range of Trip Syste	m		
ET- Without display	2.0		6G
LR-long-time rating plu	g Standard	0.4 to 1 Ir	
Connection			
Vertical spreaders			
Optional for 800 &1000	A Top	Botto	om
Must for 1250&1600A	Standard		

.....

Trip System functions:

2.0 : basic protection (long time + inst.) 6G : selective + earth-fault protection

: (long time + short time + inst. + earth-fault)

EasyPact SPS

Circuit breaker and Switch-diconnectors Customer Order form

Indication contacts			
OF - ON/OFF indication contacts			
Standard	2 OF contacts	6 A-240/380V AC	
Additional	1 OF contact	6 A-240/380V AC	
	2 OF contacts	6 A-240/380V AC	
SDE - "fault-trip" indication contact			
Standard	1 SDE	5A -240/380V AC	
Optional			
Carriage switches		8 A-240/380V AC	
CE - "connected" position	Max. 1		qty
CT - "test" position	Max. 1		qty
CD - "disconnected" position	Max. 1		qty
Remote tripping	MN - under voltage release		V
	R - delay unit (fixed time delay	y) 0.25s	
	Rr - adjustable delay unit	0.5s3s	
TCE - External sensor (NCT) for neut	ral of 3 Phase-4 Wire systems	400/1600A	
PF - "Ready to close" contact	5A-240/380V AC		
Locks			
VBP - ON/OFF pushbutton locking (b	by transparent cover using padlock	<)	
VSPO - Device locking in OFF position (Only one key lock per ACB possible			
ŀ	(ey lock kit (w/o key lock)	Profalux	Ronis
1	key lock	Profalux	Ronis
2	2 identical key locks, 1 key	Profalux	Ronis
Chassis locking in "Disconnected" po	sition:		
VSPD - by key locks	(ey lock kit (w/o key lock)	Profalux	Ronis
1	key lock	Profalux	Ronis
2	2 identical key locks, 1 key	Profalux	Ronis
Door Interlock - VPEC	On I	eft-hand side of chassis	LH)
	On r	ight-hand side of chassis	(RH)
Accessories			
VO - Safety shutters on chassis		Standard	
CDP - Escutcheon		Standard	
CP - Transparent cover for escutched	on (only drawout breakers)		
OP - Blanking plate for escutcheon (only drawout breakers)		
CB - Auxiliary terminal shield fitted or	n chassis		
EIP- Interphase barriers			
HHTK - Hand held test kit			

Note:

Customer can provide the reference no. of the product for the listed references. Kindly refer to product catalogue for list of references. All breakers mil be provided with 2 OF (2 c/o contacts), 1SDE (trip contact), Escutcheon (Panel sealing frame) as standard.

All draw-out type devices will be supplied with Chassis & safety shutter. For Electrical operated devices, indicate the voltage ratings of MCH, XF & MX Refer to product catalogue for available voltage ratings of MCH/XF/MX/MN.

All SPS products are supplied with vertical type customer connecting terminals.

Make the most of your energy SM

Schneider Electric India Pvt. Ltd.

Corporate office

9th Floor, DLF Building No.10, Tower C, DLF Cyber City, Phase II, Gurgaon - 122002, Haryana Tel: 0124 3940400, Fax: 0124 4222036 www.schneider-electric.co.in

Customer Care Centre :

Toll-free numbers: 1800 180 1707, 1800 103 0011, General number: 0124 4222040,

 ${\it Email: customercare.in@schneider-electric.com}$

